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SUMMARY
Acidic transcription activation domains (ADs) are encoded by awide range of seemingly unrelated amino acid
sequences, making it difficult to recognize features that promote their dynamic behavior, ‘‘fuzzy’’ interac-
tions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast
and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies
known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our
work reveals that strong acidic ADs containmultiple clusters of hydrophobic residues near acidic side chains,
explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar
to avidity where a minimum number of weak dynamic interactions are required between activator and target
to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy
binding observed between acidic ADs and targets.
INTRODUCTION

Transcription activators stimulate transcription in response to

signaling pathways controlling processes such as development,

growth, and stress response (Levine et al., 2014; Spitz and

Furlong, 2012). Misregulation of activators or mutations within

them leads to many human diseases and syndromes (Bradner

et al., 2017). Each activator contains one or more transcription

activation domain (AD) that usually targets coactivators—com-

plexes that contact the basal transcription machinery and/or

have chromatin modifying activity (Erkina and Erkine, 2016;

Hahn and Young, 2011). AD-coactivator binding initiates a series

of events leading to productive transcription initiation, elonga-

tion, and reinitiation, in part through direct recruitment of factors

to gene regulatory regions (Ptashne and Gann, 1997). There are

hundreds of cellular activators with distinct ADs, but many target

a small number of coactivators including Mediator, TFIID, Swi/

Snf, SAGA, NuA4, and p300. Broadly acting ADs can target

several of these coactivators, allowing them to act on a large

set of genes with different coactivator requirements. ADs have

also been implicated in promoting the formation of intracellular

condensates at enhancers, triggering the recruitment of a large
dynamic network of coactivators and other factors responsible

for gene activation (Boija et al., 2018; Cho et al., 2018; Chong

et al., 2018; Shrinivas et al., 2019).

Early work demonstrated that: (1) eukaryotic activators are

modular, with separable DNA binding and activation domains

(Brent and Ptashne, 1985), (2) ADs have biased low complexity se-

quences that are enriched in certain residues, and that the primary

sequence of the AD is not critical (Cress and Triezenberg, 1991;

Hope and Struhl, 1986; Hope et al., 1988; Jackson et al., 1996;

Ma and Ptashne, 1987b, 1987a), (3) that most ADs are intrinsically

disordered (Brzovic et al., 2011; Currie et al., 2017; Hope et al.,

1988; Kussie et al., 1996; Sugase et al., 2007; Uesugi et al., 1997),

and (4) although specific AD targets are not always conserved, at

least some ADs can work across a broad spectrum of eukaryotes

(Fischer et al., 1988; Ma et al., 1988; Sadowski et al., 1988; Struhl,

1988). These properties suggested that activator function does

not involve precise molecular complementarity with their targets

but leaves open the important question of how any of the above

properties translate into a molecular mechanism (Sigler, 1988).

In many systems apart from transcription, molecular recogni-

tion by intrinsically disordered protein regions (IDRs) is mediated

by short linear motifs, 3–10 residue sequence motifs found in
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otherwise unrelated proteins (Nguyen Ba et al., 2012; Das et al.,

2012). In contrast, AD function is encoded by a wide range of

seemingly unrelated sequences. For example, although AD

sequences can be moderately conserved in closely related or-

thologs (Pacheco et al., 2018), no common sequence motif has

been found when comparing ADs from different transcription

factors. Small to moderate-scale screens for ADs using random

sequences of varying length found that�1%of these sequences

encoded AD function, showing that no special sequence or

structure is required for function (Abedi et al., 2001; Erkine and

Gross, 2003; Ma and Ptashne, 1987b; Ravarani et al., 2018; Ru-

den et al., 1991). Other high throughput approaches, including

screening for the function of transcription factor protein frag-

ments and large-scale mutagenesis of a natural AD, also failed

to find conserved sequence motifs (Arnold et al., 2018; Staller

et al., 2018). Taken together, sequence features that correlate

with AD function include intrinsic disorder, the presence of

acidic, hydrophobic, and aromatic residues, low sequence

complexity, net negative charge (or lack of positive charge)

and, in some cases, alpha helix propensity.

Structural and molecular analysis showed that one prominent

class of activators, the acidic ADs, can recognize coactivators

using a dynamic ‘‘fuzzy’’ protein-protein interface. For example,

the yeast activator Gcn4 contains tandem ADs that bind four

structured domains in the Mediator subunit Med15 (Brzovic

et al., 2011; Tuttle et al., 2018; Warfield et al., 2014). Structural

analysis showed that the individual AD-Med15 interactions are

dynamic, and the two factors appear to interact via a cloud of hy-

drophobicity rather than through sequence-specific interactions.

This binding mechanism does not require a unique sequence

motif for AD function. Because of this, it has been difficult to pre-

dict sequences with AD function and to understand which fea-

tures promote their dynamic binding properties and specificity.

For example, how does biased sequence lead to specificity in

molecular interactions, how specific are these sequences in

the proteome, and is this class of activators representative of

most activators? Understanding these fundamental properties

of ADs is essential toward progress in determining the molecular

basis of AD specificity for certain coactivators, dissecting mech-

anisms used in gene activation, and in predicting the conse-

quences of naturally occurring mutations on AD function.

In this work, we used a high throughput approach in yeast to

screen over amillion synthetic peptide sequences and found large

numbersofAD-positiveandAD-negative sequences.Weanalyzed

the resulting sequence sets using logistic regression and also

developed a deep neural network predictor of AD function, termed

ADpred. The combination of these two approaches allowed us to

identify sequence features that specify AD function in natural tran-

scription factors and, importantly, to relate these properties to a

mechanism for molecular recognition and function of acidic ADs.

RESULTS

A High-Throughput Screen for Synthetic Activation
Domains
To identify features encoding AD function, we isolated many syn-

thetic ADs using a high throughput approach. We reasoned that

gathering large sets of polypeptides with and without AD
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function would allow computational identification of physical

properties, sequence motifs, and other features associated with

ADs. Well-characterized natural ADs range from �10 to R100

residues in length, but many are shorter than 30 residues. We

created libraries containing 30 randomized amino acids attached

to the N-terminal linker region and DNA-binding domain of yeast

Gcn4 (residues 132–281) (Figure 1A). Prior work showed that

this Gcn4 derivative has no inherent AD function and that it can

accept awide variety of natural and synthetic ADs, permitting acti-

vation of yeast Gcn4-dependent genes (Pacheco et al., 2018;

Warfield et al., 2014). We varied the ratio of the four DNA bases

separately at codon positions 1, 2, and 3 (LaBean and Kauffman,

1993), to avoid over or underrepresentation of amino acids with

large or small numbers of codons (e.g., leucine and tryptophan).

We made two libraries that either (1) slightly biased the random-

ized coding sequences toward residues normally enriched in

IDRs (Uversky, 2013), or (2) encoded a roughly equal representa-

tion of all amino acids (Figure S1A). Each library was separately

screened for AD function and the results presented below are

derived from pooling sequences in both libraries. Analysis of the

individual libraries yielded similar results (STAR Methods).

The individual libraries were transformed into a yeast reporter

strain lacking wild-type (WT) Gcn4 and containing a Gcn4-depen-

dent promoter driving GFP expression. Approximately 25 million

yeast transformantswere obtained, and�3.6million contained un-

interrupted ORFs fused to Gcn4. To enrich for functional ADs, we

grew cells overnight in synthetic media lacking histidine and con-

taining 3-amino triazole (3-AT), a competitive inhibitor of the yeast

His3 protein. HIS3 transcription is stimulated by Gcn4, and only

cells containing functional Gcn4 produce enough His3 protein to

efficiently growunder these conditions (HopeandStruhl, 1986). Af-

ter selection in 3-AT, we sorted cells by their GFP levels using fluo-

rescence-activated cell sorting (FACS). The distribution of fluores-

cence intensities shows that a subpopulation of cells expressed

GFP at levels near those of cells with WT Gcn4 (Figure 1B). FACS

was used to split these GFP-expressing cells into four bins of

increasing fluorescence. We predicted that cells with the highest

GFP levels (bin 4) should contain the strongest ADs. DNA was ex-

tracted from cells in the individual GFP-expressing bins, and

sequenced. Only sequences containing a complete 30-residue

ORF were analyzed. Single point mutations and other

sequencing-related artifacts were minimized by clustering similar

sequences, allowing for up to 6 mismatches per sequence to be

included in the same cluster. The most frequent sequence in the

cluster was used as the cluster representative. The AD-negative

set contains peptide sequences from the background library

(before3-ATselectionandFACSscreening) butwith all AD-positive

sequences identified inbins1–4 removed.TheAD-positivesetcon-

sists of sequences found inbins 2–4. Sequences foundonly in bin 1

wereomittedas they likelycontainsomefalse-positives.Asa result,

analysis of the combined libraries gave �37,000 unique AD-posi-

tive sequences and �13 106 AD-negative sequences (Table S1).

Most functional ADs were not found in a single bin but were

distributed among several bins, with the distribution presumably

reflecting AD strength. To check the accuracy of our FACS-

based screening, we first assigned an AD enrichment score to

each AD-positive sequence. This score measures the weighted

enrichment of a 30-mer sequence in bins 1 to 4 with respect to



Figure 1. Experimental Design and

Validation

(A) Schematic of the high throughput screen for

ADs. Cells containing a GFP reporter driven by a

synthetic Gcn4-dependent promoter were trans-

formed with libraries of random 30-mers fused to

the N terminus of the Gcn4 DNA binding domain.

Cells with Gcn4-AD function were enriched by

growth in 3-AT followed by FACS. DNA from the

libraries before 3-AT selection and FACS (back-

ground library) and from the four GFP-containing

bins were sequenced. The AD-negative set was

created by removing sequences found in bins 1–4

from the background library. TES, ADH1 termi-

nator; pA, poly-A site.

(B) Plots show the number of cells versus relative

fluorescence intensities from FACS analysis of

cultures with WT Gcn4, the enriched library, and

no Gcn4. Vertical lines show gates used for

binning AD-containing cells.

(C) Experimental validation of enrichment scores

on 18 AD sequences versus GFP expression in the

reporter strain. Individual clones were assayed by

FACS and the mean fluorescence of the cell

population is shown.

See Figure S1 and Table S1.
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its number of occurrences in the library prior to 3-AT and FACS

screening (STAR Methods). Next, we selected 18 AD-positive

sequences with a wide range of enrichment scores and

measured GFP expression in the reporter strain by fluorescence

assay. We found that the calculated AD enrichment score corre-

lates well with the mean GFP fluorescence induced by individual

AD candidates, validating our activator screen (Figure 1C; Pear-

son correlation R = 0.79).

Amino Acid Composition and Specific Dipeptide
Sequences Are Important Predictors of AD Function
We first compared sequences from the AD-positive and negative

sets by calculating a log-odds score for each sequence based

on its amino acid composition. This scoremeasures the similarity

of amino acid composition in any individual sequence compared

with the AD-positive and AD-negative sequence sets (STAR

Methods). We found that individual sequences in the positive

and negative sets have distinct but overlapping amino acid com-

positions (Figure 2A). This finding is consistent with earlier results

showing that intrinsically disordered protein regions and ADs

generally contain low complexity sequences that are biased to-

ward certain amino acids.

To quantify the contribution of amino acid composition to AD

function, we tested how well composition alone predicts func-

tion. We fit a logistic regression model for AD prediction that
used only the relative amino acid fre-

quencies (between 0 and 1) in each posi-

tive or negative sequence. The model

was trained with 90% of the AD-positive

and AD-negative data and tested with

10% held out data. Surprisingly, compo-

sition alone is a very strong predictor of
function with an area under the precision-recall curve (AUPRC)

score of 0.934 ± 0.002 (accuracy of predictions: 0.883 ±

0.003), compared with a maximum possible AUPRC of 1.0 for

perfect predictions and 0.5 for random predictions. The logistic

regression coefficients from this model show the bias toward

specific residues in AD-positive sequences (Figure 2B). Consis-

tent with results from prior analysis of natural and synthetic AD

sequences (Cress and Triezenberg, 1991; Hope et al., 1988;

Ma and Ptashne, 1987b; Pacheco et al., 2018; Ravarani et al.,

2018) the regression coefficients showed that ADs identified in

our screen are depleted of positively charged residues (R, H,

and K), and enriched for negatively charged (D and E), hydropho-

bic and aromatic residues, particularly F and W.

While no unique sequence or short linear motif has been

recognized as conserved in natural ADs, it is possible that com-

binations of short heterogeneous sequence motifs contribute to

AD function. To explore this possibility, we developed a regres-

sion model that utilizes the frequencies of all 400 possible dipep-

tide sequences. The resulting logistic regression coefficients

from this analysis show the bias toward specific dipeptides

that are enriched or depleted in the synthetic ADs (Figure 2C).

Using dipeptide frequency instead of amino acid composition

improved model performance to an AUPRC score of 0.942 ±

0.002 (accuracy of prediction: 0.891 ± 0.004). Some dipeptides

are clearly enriched in ADs such as D or E followed by a
Molecular Cell 78, 1–13, June 4, 2020 3



Figure 2. Properties of Synthetic ADs

(A) Distribution of log-odds scores for sequences from the AD-positive (blue)

and AD-negative (orange) sets.

(B) Coefficients of amino acid frequencies derived from a logistic regression

model for AD probability. Blue, positive charge; red, negative charge; green,

hydrophobic/aromatic, cyan, polar; yellow, others.

(C) Dipeptide sequences contribute to AD function. Heatmap of coefficients

from a logistic regression model using only dipeptide frequencies. The first

amino acid in the dipeptide is on the y axis. Log10 p values are shownwhere p <

0.001. p values are from likelihood ratio tests using all 400 dipeptide regression

coefficients versus all but one.

See Figure S1.
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hydrophobic residue, especially F or W (log p values from likeli-

hood ratio tests are shown inside the boxes in Figure 2C). The

reverse dipeptides (e.g., W followed by D or E) show a negligible

impact on the model performance (STARMethods). Importantly,

we also found that certain dipeptides are strongly depleted in

ADs, such as an aliphatic followed by a positive or polar residue,

proline, or glycine (e.g., L–P), whereas the same was not true for

the reverse dipeptides (Figure 2C). This analysis suggests that

dipeptide sequences contribute to AD function over and above

the contribution from their amino acid composition.

To confirm that dipeptide sequences contribute to AD function,

we swapped individual dipeptide coefficients in the regression

model (e.g., the DW coefficient was swapped with all other coef-

ficients in 400 separatemodels) and used the newmodels to pre-

dict AD function (Figure S1B). We found that replacing the DW

coefficient (labeled Fwd) with every other coefficient in thismatrix

decreases average model performance significantly, while re-

placing the WD coefficient (labeled Rev) has no appreciable ef-

fect on average model performance. Figure S1B also shows

that replacing coefficients for six similar dipeptides (EW, EV,

DV, DL, DF, and DY) also decreased model performance while
4 Molecular Cell 78, 1–13, June 4, 2020
replacement of the reverse peptide coefficients does not. We

also compared the performance of our regression model with a

previously proposed universal 9 amino acid AD sequence motif

(Piskacek et al., 2007) (https://www.med.muni.cz/9aaTAD/).

Both the regular and the more stringent 9aa sequence pattern

did not perform well with our experimental data, achieving accu-

racies of 0.57 and 0.60, respectively.

A Deep Learning Model for AD Prediction
Todiscover complex features that can contribute to AD function in

an unbiased, agnostic fashion and to improve the accuracy of AD

predictions, we trained a deep-learning neural networkmodel that

does not require prior knowledge of features contributing to AD

function (Schmidhuber, 2015). For example, this approach does

not impose a limit on either the size or the position of the functional

AD sequence within the 30-mer. The model inputs are the 30-res-

idue sequences from each peptide in the positive and negative

sets (20 values per position in one-hot encoding), predicted sec-

ondary structure (three values per position), and predicted disor-

der (one value) (Figure 3A). A series of 29 filters were used for

data convolution that allowed us to model associations between

residues at distant and variable positions. The resulting data are

analyzed using a dense neural network with two soft-sign layers

and the final output node yielding the probability of the input

sequence to possess AD function. During training, the weights of

the filters and other neural network connections are optimized,

correcting for an imbalance of positives andnegatives bysubsam-

pling the same number of negatives down to the same number of

positives before each training epoch.

Figures 3B and 3C compare the performance of the best deep

learning and regression models. The best deep learning model,

termed ADpred, uses only amino acid sequence and predicted

secondary structure and shows great improvement in perfor-

mance over the dipeptide regression model with an AUPRC

score of 0.975 ± 0.001 (accuracy 0.932 ± 0.001). We found

that secondary structure but not disorder predictions modestly

improved model performance (Figure 3C). The striking improve-

ment in performance of the deep learning models over regres-

sion approaches suggests the existence of important features

associated with AD function in addition to bias in amino acid

composition and dipeptides sequences.

To evaluate the contribution of peptide charge for AD predic-

tion using the deep learning model, we compared average

charge per residue versus ADpred probabilities for both AD pos-

itive and negative sequences (Figure 3D). This analysis showed

that extreme positive or negative charge correlates well with pre-

dictions, but many peptides cannot be accurately predicted by

charge alone. For example, while we found few ADs with net

positive charge, a large number of negatively charged peptides

do not have AD function. This is consistent with the conclusions

above that other features, in addition to amino acid composition,

make important functional contributions.

ADpred Identifies Sequence Features Important for AD
Function
To identify the sequence features used by ADpred to predict

function and to test the utility of ADpred on natural activators,

we first evaluated its performance on the Gcn4 central AD

https://www.med.muni.cz/9aaTAD/


Figure 3. Convolutional Deep Neural Network Architecture and Per-

formance

(A) Input for each sequence consists of the 30-amino acid peptide sequence

and its predicted sequence features (secondary structure and/or intrinsic

disorder). A convolutional layer learns patterns characteristic of ADs inde-

pendent of their precise position in the AD sequence. The flattened outcome of

the convolution is used as an input for a dense two-layer-network with 100 and

30 neuron, respectively. The output layer gives the probability of AD function

for the input sequence.

(B) Analysis of model performance. The precision-recall curve compares the

performance of the linear regression model utilizing dipeptide frequencies and

the best deep learning model (ADpred) utilizing amino acid sequence and

secondary structure predictions.

(C) Comparison of several regression and deep learningmodels evaluated with

10-fold cross validation, with the lines corresponding to standard error of the

mean. dis., disorder predictions; seq., peptide sequence; ss, secondary

structure prediction (statistics from Table S4).

(D) Correlation between predictions of the deep learning model and the

average charge per residue of the 30mers. Dotted line represents peptide with

neutral average charge.
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(cAD) where thousands of variants have been tested for in vivo

function (Jackson et al., 1996; Staller et al., 2018; Warfield

et al., 2014). We performed in silico saturation mutagenesis of

residues 108–137 of the cAD, changing every residue to every

other amino acid. We fed the resulting set of peptides to ADpred

to predict AD probability with the results shown as a heatmap in

Figure 4A. Remarkably, the in silico predictions of this single-res-

idue mutagenesis showed excellent correspondence with re-

sults from an analogous in vivo study (Warfield et al., 2014)
with a Pearson correlation of R = 0.82 (Figure 4B, left). We also

used ADpred to predict function for thousands of Gcn4 variants

used in a high throughput functional screen, most containing

multiple mutations within the cAD (Staller et al., 2018) (Figure 4B,

right). Again, there was good correspondence between predic-

tion and published in vivo results with Pearson correlation

R = 0.57.

From this combined analysis, the importance of the three

Gcn4 residues that make direct contact with Med15 (W120,

L123, and F124; labeled in red in Figure 4A) are clearly apparent

as well as the lesser but noticeable impact of three other hydro-

phobic residues (F108, Y110, and L113; labeled in green) that

have been observed in vivo (Jackson et al., 1996; Staller et al.,

2018). Furthermore, our model predicts that insertion of posi-

tively charged residues are most likely to have a deleterious

impact on function when positioned near the key hydrophobic

residues, that insertions of additional hydrophobic residues

generally increase function, and that no single negatively

charged residue is important, in agreement with earlier in vivo

studies (Jackson et al., 1996; Staller et al., 2018; Warfield

et al., 2014). Using the same in silico mutagenesis approach,

we predicted important residues within yeast ADs from Ino2

and Gal4 (Figure S2). Again, we observe an excellent correspon-

dence between in silico predictions and experimental results

(Pacheco et al., 2018; Tuttle et al., 2019), showing that the

deep learning model is an accurate predictor of acidic AD

function.

ADs Generally Contain Clusters of Hydrophobic
Residues Rather Than Specific Sequence Motifs
For additional insight into sequence features that lead to the high

performance of the deep learningmodel, we analyzed theADpred

results using Integrated Gradients (Ancona et al., 2018; Sundarar-

ajan et al., 2017), an algorithm that identifies positive and negative

features that contribute to a high prediction score. The results

from analysis of four representative yeast ADs is shown in Fig-

ure 4C, with the results presented as sequence logos. Figure S3

shows the Integrated Gradient analysis of 20 high-scoring syn-

thetic peptides from the high throughput screen (analysis of AD-

negative peptides returns empty logos). In contrast to earlier pre-

dictions (Piskacek et al., 2007; Warfield et al., 2014), we found no

evidence for ADs to contain defined sequence motifs of three or

more residues. Rather, a common feature is clusters of hydropho-

bic residues in the background of an acidic polypeptide. Recogni-

tion of this feature is likely a primary reason that ADpred performs

better than predictions based on amino acid composition alone.

Many strong natural ADs and the top scoring synthetic peptides

have multiple occurrences of this simple sequence pattern. In se-

quences with properly biased amino acid composition, the prob-

ability that this pattern occurs multiple times increases with the

length of the peptide and probably contributes to AD strength.

Recognition of Acidic ADs within Eukaryotic
Transcription Factors
We next used ADpred to analyze yeast, Drosophila, human, and

viral transcription factors for which in vivo AD function has

already been mapped (Figure 5). For this analysis, we used an

ADpred probability of R0.8 as a high confidence threshold. In
Molecular Cell 78, 1–13, June 4, 2020 5



Figure 4. Performance of ADpred on Yeast Activators

(A) ADpred predictions for all possible single amino acid mutations of the Gcn4

central AD (cAD). An increase in ADpred score is darker red, decreases are

lighter red or blue. Wild-type cAD ADpred score is indicated in the colorbar.

Residues important for Gcn4 function identified in prior work are colored red

and green in the Gcn4 sequence below the heatmap.

(B) Left: the AD activity of cAD derivatives measured in Warfield et al. (2014)

shows a high correlation with ADpred predictions (R = 0.82). ADpred proba-

bilities were transformed from (0,1) to (-N,N) by the logit function. Right:

comparison of ADpred predictions with a large set of yeast Gcn4 derivatives

(Staller et al., 2018). Experimental data plotted as raw activity valuesmeasured

under amino acid starvation conditions. Colors represent the density of points

from low density in blue to high density in red. The white line shows a K nearest

neighbor regression analysis (where Y is predicted by local interpolation of

values from the K nearest neighbors on X, using kNeighborsRegressor func-

tion from scikit-learn package) (R = 0.57).

(C) Predicted importance of individual residues for ADpred scores identified

using the Integrated Gradients algorithm (Ancona et al., 2018; Sundararajan

et al., 2017). Residue contributions in four selected yeast ADs are shown as

sequence logos (positive upward, negative downward) Residue colors are the

same as in Figure 2B.

See Figures S2 and S3.
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the figure, blue peaks show AD predictions, yellow boxes indi-

cate experimentally validated AD function, and structured do-

mains are indicated by gray boxes. In many yeast factors

(Gcn4, Met4, Ino2, Rap1, Gal4, and Rtg3), our model predicts

AD function coincident with known ADs (Figure 5A). One excep-
6 Molecular Cell 78, 1–13, June 4, 2020
tion is the Gcn4 N-terminal AD, where optimal AD function

requires a combination of four short hydrophobic clusters scat-

tered throughout the 100 amino acid-long N-terminal region

(Jackson et al., 1996; Tuttle et al., 2018). None of these four short

clusters can act as an AD on their own but they require the others

for in vivo function. Within this region, ADpred predicts function,

but with a probability <0.8. It seems likely that our model does

not give a high probability to this long AD because it was trained

on ADs of %30 residues. Another exception is Hap4 where the

three highest probability scores lie outside of a previously map-

ped AD region (see below).

Examination of Drosophila transcription factors readily identi-

fied three ADs (MTF-1, CG14451, and BTEB2) that were identi-

fied using a prior high throughput screen (Arnold et al., 2018)

(Figure 5B). In contrast, ADpred did not identify ADs in two other

Drosophila factors from the same screen (HLH3B in Figure 5B

and SAGE-not shown). One possibility is that these two factors

contain ADs of a different class compared with the ADs analyzed

here. Well-characterized ADs in the human and viral factors p53,

E2F1, MyoD, Hif2a, and VP16 were clearly recognized (Fig-

ure 5C). However, the ADs from SP1 are interesting exceptions.

SP1 contains twoQ-rich ADs that are both required for maximum

function (Courey and Tjian, 1988), and SP1 does not function as

an activator in the yeast system (Ponticelli et al., 1995). Neither of

these Q-rich ADs are recognized by ADpred, confirming that

they are in a different class from the acidic ADs examined

here. In human c-Myc, ADpred does not recognize the

conserved Myc box 2 region, thought to be involved in transcrip-

tion activation. However, another region (residues 88–119)

recently shown to directly bind TBP and to be important for

Myc function (Wei et al., 2019) is identified by ADpred with a

high probability score. Finally, it is apparent from Figure 5 that

peptides with predicted AD function are not exclusive to disor-

dered regions. For example, Gal4, HLH3B, HIF2a, VP16, and

the transcription repressor ETV6 all have peptide sequences

with AD potential that are contained within regions of known or

predicted 3D structure.

Because ADpred identified several sequences with high con-

fidence of AD function in regions outside of mapped ADs (Fig-

ure 5), we tested whether these are false positives. An alternative

explanation is that these peptides have strong potential for AD

function but are not positioned in the proper context to function

in their natural setting; e.g., are in structured regions or are other-

wise inaccessible to the transcription machinery. 30-residue

segments containing several predicted yeast and Drosophila

ADs (indicated by red triangles in Figure 5) were fused to the

Gcn4 DNA binding domain. Function was assayed in vivo by

treating cells with sulfometuron methyl (SM) for 90 min to simu-

late amino acid starvation and to induce synthesis of Gcn4,

followed by RNA quantitation using qRT-PCR (Figure 6A; Table

S2). When assayed at the Gcn4-dependent HIS4 gene, a pre-

dicted AD fromGal4 (Gal4_A) (Ma and Ptashne, 1987a) and three

from Hap4 (Hap4_A,B,C), produced 3.7- to 8.6-fold higher tran-

scription compared with SM-treated cells lacking Gcn4 (labeled

‘‘vector’’ in Figure 6A). At HIS4, we used activation of transcrip-

tion by R3-fold for scoring AD+ function (dashed lines in Fig-

ure 6). Our results show that these predicted ADs do not inher-

ently lack activity but can function as ADs in an appropriate



Figure 5. Performance of the Deep

Learning Model on Cellular Transcription

Factors

ADpred analysis of (A) S. cerevisiae,

(B) Drosophila, and (C) human and viral transcrip-

tion factors. Known AD-containing regions are

yellow, known structured regions are gray, and

ADpred scores are blue. Red triangles show pre-

dicted AD+ sequences that test positive for AD

function in vivo; dark blue triangles showpredicted

AD� sequences without AD function (see Fig-

ure 6). The TBP-binding peptide in c-Myc (Wei

et al., 2019) is indicated. Published data on ADs is

from the following sources: Arnold et al. (2018),

Fields and Jang (1990), Helin et al. (1993), Kuras

and Thomas (1995), Leuther and Johnston (1992),

Ma and Ptashne (1987a), Pacheco et al. (2018),

Pascal and Tjian (1991), Raycroft et al. (1990),

Regier et al. (1993), Rothermel et al. (1997),

Schwank et al. (1995), Wei et al. (2019), and

Weintraub et al. (1991). Bars represent standard

error of the mean (SEM).
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context. We also tested ADpred predictions for several

Drosophila factors in the yeast system. Consistent with our pre-

dictions, the ADs from MTF-1, CG14451, and BTEB2 all showed

in vivo AD function, while the regions previously identified as ADs

in vivo but not by ADpred, showed no AD function in yeast

(HLH3B and SAGE).

Length Dependence of Natural and Synthetic ADs
Our synthetic AD screen used randomized sequences of 30 res-

idues and ADpred uses a sliding window of 30 residues to

analyze sequences for AD function. However, our approach

did not require the ADs to be a specific length or at a particular

position within the 30-mer. For example, if some ADs are 10-res-

idues long, a 30-mer might contain one or more ADs. For this

reason, deep learning is a powerful way of pinpointing the AD se-

quences without any a priori knowledge of the AD position within

the 30-mer, nor how long, or how many ADs might be contained

in any one 30-mer.
We used several methods to estimate

AD length. First, we counted the number

of consecutive 30-residue windows that

give a high confidence ADpred score

(R0.8). This criterion is used for analysis

of yeast, Drosophila and human pro-

teomes and transcription factors sets

shown below. Second, we used satura-

tionmutagenesis (e.g., Figure 4A) to iden-

tify residues predicted to be functionally

important. Third, we chopped proteins

containing predicted ADs into segments

of different lengths and computationally

inserted these k-mers into a randomized

neutral background that contained only

the residues S, T, N, Q, A, G that are

neither strongly enriched or depleted in

ADs (Figures 2B and S4). For Gcn4, this
analysis identified two overlapping ADs, each 22–26 residues

long, that are a combination of hydrophobic residue clusters in

the N- and C-terminal ADs. In contrast, yeast factor Tog1, with

an uncharacterized AD, is predicted to contain a short 8-residue

sequence that defines its core AD.

Fourth, we used a combination of computational and func-

tional approaches to gauge how accurately ADpred predicts

the function of very short peptide sequences. We randomized

sequences of 1–40 residues in length (all amino acids had an

equal chance of being in the insert) and computationally inserted

these peptides into the middle of a neutral 60-mer containing

only the residues S, T, N, Q, A, G. 10,000 randomized insert se-

quences of each length, plus the constant flanking sequence,

were analyzed byADpred. As expected, the fraction of predicted

ADs was zero for sequences shorter than 6 residues but rose

quickly for longer sequences (Figure 6B). We tested a few of

the short insert sequences for in vivo function and found that

the 7-mer and 8-mer sequences activated HIS4 transcription
Molecular Cell 78, 1–13, June 4, 2020 7



Figure 6. In Vivo Tests of ADpred Predic-

tions of Natural and Synthetic ADs

qRT-PCR quantitation of mRNA from the yeast

HIS4 gene, normalized to ACT1 mRNA. Dotted

lines indicate 3-fold activation above cells lacking

Gcn4 (vector). Cells contained the indicated AD

sequence (Table S2) fused to the Gcn4 DBD in

vector pLH365 and were induced with SM for

90 min before mRNA quantitation. Gray bars, no

SM added, all others have SM; black bars, control

Gcn4 derivatives:WTGcn4 and theGcn4 cAD; red

bars, sequences predicted to have high probabil-

ity of AD function; blue bars, low probability of AD

function. Error bars represent standard error of

the mean (SEM).

(A) Tests of yeast and putative Drosophila ADs

from Figure 5.

(B) Length dependence of AD function. Right

graph shows the number of predicted ADs

recovered from 10,000 randomized sequences of

the indicated lengths. Left panel shows qRT-PCR

analysis of predicted ADs. The first number of the

sequence name indicates the length of the syn-

thetic AD (e.g., 9_188 is an insert of 9 amino acids).

(C) Arrows point to regions where selected AD-

positive sequences were randomized and used to

search for one or two pairs of sequences with the

same amino acid composition but either high (+) or

low (�) ADpred scores. Left plot shows qRT-PCR

analysis of these randomized sequences.

Sequence pairs with identical log-odds scores are

labeled A–E as in the log-odds histogram followed

by 1 or 2; e.g., A1+/A1�, A2+/A2�, etc.

See also Figures S4, S5, and S6 and Table S2.
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<3-fold, while both 9-mers activated 4.5-fold. From our com-

bined results, we conclude that ADpred recognizes ADs of vari-

able length with practical length limits of ADs R9 to %30 resi-

dues in length. This minimum length requirement fits with our

published analysis of natural ADs, where AD function is often

spread out over 15–30 residues.

ADpred Can Overrule Strong Amino Acid
Composition Bias
As demonstrated above, amino acid sequence composition is

perhaps the most important factor determining the probability

of AD function, but other features also make important contribu-

tions. Given that a model using only sequence composition as a

feature reaches quite high accuracies, we asked whether the

ADpred predictions are dominated by sequence composition.

We selected sequences from our libraries containing a wide

range of log-odds scores for amino acid composition (labeled

A to E in Figure 6C). For each selected sequence, we generated

a set of 10,000 randomly permuted 30-mer peptides and then

sorted them using ADpred. From this set, we selected one or

two pairs of sequences with identical amino acid composition
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but with high and low ADpred scores

(AD+ or AD�). Upon testing these pairs

of 30-mers for function at HIS4 and using

activation of transcription by R 3-fold for
scoring AD+ function, all predictions were confirmed except for

one of two sequences tested with +10 log-odds score (Fig-

ure 6C). In this exception to our prediction, sequence E2+ has

a sequence composition extremely biased toward AD function

but only shows 2.6-fold activation. Combined, our results

demonstrate that ADpred can correctly predict function with

high accuracy even if the sequence composition is strongly

biased toward non-AD sequences and vice versa.

We used the Integrated Gradients algorithm to examine the

scrambled peptide sequences with variable amino acid compo-

sition used in Figure 6C (Figure S5). This analysis showed that

peptides confidently predicted to have AD function but, with un-

favorable amino acid composition, had separately clustered the

favorable and unfavorable residues away from each other. For

example, AD+ peptides with compositions labeled A and B

had positively charged residues segregated to the N terminus

while the acidic and aromatic residues were positioned in the

C terminus. This further validates our conclusion that short clus-

ters of hydrophobic residues in the background of an acidic poly-

peptide are important for function and that ADpred recognizes

functional sequences of less than 30-residues long.



Figure 7. Properties of Predicted AD Regions

(A) Tests for enrichment of predicted ADs in sets of yeast, Drosophila, and

human transcription factors (Table S3) compared to the complete proteomes

plotted against the minimum length threshold for calling an AD. The enrich-

ment p values from a Fisher test are shown below.

(B) Predicted disorder and helicity in and around predicted ADs from a set of 71

yeast transcription factors with ADsR15 residues long (Table S3). To compare

properties of the ADs, which are of variable length, the average score for helical

and disordered content at the five central residues of the ADs were calculated

and shown graphically in a 5-residue window. Black thick line, median values;

gray, values between the 25th and 75th percentile. Results are shown for a

cutoff of ADs 15 or greater residues in length where 71 ADs meeting this cri-

terion were found in the set of 132 yeast factors.

See also Table S3.
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We also tested many of the above peptides for activation of

yeast ARG3 transcription (Figure S6A). ARG3 is transcribed at

�7-fold lower rate compared to HIS4, and transcription of

ARG3 is regulated byGcn4 and two repressors. Our prior studies

using AD derivatives at both promoters showed that HIS4 is

generally more permissive for AD function, perhaps because of

the more complex regulation and coactivator requirements at

ARG3 (Pacheco et al., 2018; Tuttle et al., 2018). Because WT

Gcn4 shows lower levels of activation at ARG3 compared with

HIS4 (5.5-fold versus 14-fold), we set a threshold of 2-fold

activation for scoring AD function (Figure S6A). Of the four AD

predictions for yeast proteins outside of previously mapped

ADs, only one activated ARG3 >2-fold (Hap4A), but all

Drosophila proteins examined and 15 of 18 synthetic sequences

tested behaved as expected. Thus, our predictor performs well

but is less accurate on a promoter with more stringent AD re-
quirements (77% accuracy at ARG3 compared to 93% at

HIS4). Nevertheless, there is a high correlation of experimental

versus predicted values at both HIS4 and ARG3 with R = 0.85

and 0.67, respectively (Figure S6B).

Acidic ADs Are Enriched in Yeast but Not in Drosophila

or Human Transcription Factors
To further explore properties of natural ADs, we applied the deep

learning model to the entire yeast, Drosophila and human pro-

teomes. We characterized protein regions as AD-containing

(ADpred probability R0.8) and by the length of the predicted

AD region.We compared predictions within the proteome to pre-

dictions on a subset of 132 yeast transcription factors, some of

which are known activators, and to sets of 754 Drosophila and

1043 human transcription factors (Bateman et al., 2019; Stamp-

fel et al., 2015; Vaquerizas et al., 2009) (Figure 7A; Table S3). We

observed a modest but clear enrichment of 20–30 residue long

acidic ADs in yeast transcription factors (p < 0.01). In contrast,

we found no enrichment of acidic ADs in the set of Drosophila

or human transcription factors. While this latter result seems sur-

prising, it may indicate that metazoan transcription factors most

often use a different type of AD. The result that acidic AD-type

peptides exist in non-transcription factors is also in agreement

with our findings above that not all peptides with inherent AD

function are in a context that allows them to function as

activators.

ADs Show Higher Helical Propensity and Less Disorder
Than Surrounding Sequences from In Silico Analysis
Finally, we explored whether sequences within the proteome

having predicted AD function are enriched for disorder or sec-

ondary structure elements. For this analysis we used a cutoff

of ADs R15 residues in length. Our analysis examined the 25th,

50th, and 75th percentiles of the predicted helical propensity or

disorder within 50 residues N and C-terminal to the predicted

AD. To compare properties of the ADs, which are of variable

length, we plotted the average score for helical and disordered

content at the five central residues of the identified ADs indepen-

dent of their length and represented this score graphically in a

5-residue window. The predicted ADs from a total of 71 yeast

transcription factors have, on average, lower disorder and higher

helical propensity compared to the surrounding sequence

(Figure 7B). Consistent with prior expectations, our analysis

suggests that many natural ADs are peptides with alpha helical

propensity located within disordered regions. We found this

same pattern whether analyzing the entire yeast proteome, the

subset of nuclear proteins, or only yeast transcription factors

(Figure S7). We therefore suggest that the observed pattern of

helicity and disorder might be some inherent property of the

acidic ‘‘AD-type peptides’’ and their normal protein environment,

whether or not they are transcription factors.

DISCUSSION

Since their discovery and initial characterization, the nature of

transcription activation domains has been enigmatic (Ptashne

and Gann, 1990; Sigler, 1988; Struhl, 1987). Nearly all character-

ized ADs are intrinsically disordered, have no obvious common
Molecular Cell 78, 1–13, June 4, 2020 9
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sequence motif, and yet the function of some activators is

conserved from yeast to humans. Together, these and other

properties suggested that the function of activators does not

require precise molecular interactions of ADs with their targets.

In agreement with this conclusion, structural studies showed

that one class of activators, the acidic ADs, can interact with their

targets via a dynamic fuzzy interface. (Brzovic et al., 2011; Tuttle

et al., 2018). This prior work has left unanswered several impor-

tant questions including: (1) What sequence properties of the

activator promote this molecular recognition mechanism? (2)

How many transcription factors use this mechanism? (3) Can

these sequence features be recognized computationally and

how common are these features in transcription factors? and

(4) Is this molecular recognition mechanism used outside of the

transcription system? In this work, we generated large sets of

synthetic activators and non-activators and, in combination

with two machine learning approaches, developed an accurate

predictor of acidic AD function (ADpred; https://adpred.

fredhutch.org). Working backward from the predictors allowed

us to identify, in a systematic way, properties and sequence

features driving AD function and to relate these properties to a

molecular recognition mechanism.

Randomized libraries have been screened for AD function in

earlier work (Abedi et al., 2001; Erkine and Gross, 2003; Ma

and Ptashne, 1987b; Ravarani et al., 2018). However, our new

approach identified �60-fold higher numbers of ADs and a

much larger number of non-ADs, an important starting point for

systematic analysis of functional properties. For example, a prior

machine learning approach used 926 synthetic AD variants that

gave an AD prediction AUROC score of 0.773 (in comparison to

our AUROC of 0.977; Table S4) and attributed different relative

importance to some of the features described here (Ravarani

et al., 2018).

As inferred from earlier studies, we found a striking difference

in amino acid composition between the AD-containing and non-

AD sequences. A logistic regression approach based solely on

amino acid composition was surprisingly accurate (AUPRC

0.934), showing that composition is the most important feature

in determining the probability of function. Regression allowed

us to quantify the contribution of residue type to predicted func-

tion, and this was consistent with earlier work: ADs are generally

depleted of positively charged residues and enriched for acidic,

hydrophobic and especially aromatic residues. Importantly, this

approach also allowed us to examine the contributions of simple

sequence motifs. Our analysis showed that functional ADs are

enriched for specific dipeptides and depleted of others. One of

these dipeptides, DW, had been identified earlier (Ravarani

et al., 2018). This is in agreement with a prior proposal that one

function of acidic residues in ADs is to promote solvent exposure

of hydrophobic residues that are involved in direct molecular in-

teractions (Staller et al., 2018).

To improve performance and to enable analysis on a prote-

ome-wide scale, we developed a deep neural network for AD

prediction. Deep learning allows predictions of function without

a priori knowledge about which patterns or properties might be

important for the prediction. For example, identification of ADs

with this approach is independent of the number, position, or

length of ADs contained within any of the 30-mers. This
10 Molecular Cell 78, 1–13, June 4, 2020
approach gave a striking improvement in the accuracy of ADpre-

diction compared to the logistic regressionmodel (AUPRC 0.975

compared to 0.934). ADpred performs well, even with se-

quences that show extreme bias in amino acid composition

against AD function. Including features representing predicted

disorder did not increase performance. This is not surprising,

because it is unlikely that a sequence in our library of 30-mers

would by chance fold by itself.

Analysis of sequence features that contribute to ADpred

performance showed that ADs contain clusters of hydrophobic

residues in the background of an acidic polypeptide and that

the strongest ADs contain multiple examples of this feature.

This feature is found in both natural and synthetic ADs and

seems a key general feature corresponding to function. Earlier

it was noted that the Gcn4 N-terminal AD requires a combination

of four such clusters spread out over �100 residues (Jackson

et al., 1996; Tuttle et al., 2018). However, until our new analysis,

it was unclear whether this feature generally contributed to the

function of shorter ADs (e.g., in the 15–20 residue range) or

whether AD function is primarily encoded by combinations of

more sequence-specific motifs (Piskacek et al., 2007; Warfield

et al., 2014).

We suggest that these hydrophobic clusters function to

increase the effective affinity of the AD peptides for their coacti-

vator targets using a mechanism similar to avidity or allova-

lency—whereby a receptor dynamically interacts with multiple

binding sites on a single ligand, effectively inhibiting the dissoci-

ation of the twomolecules (Locasale, 2008; Olsen et al., 2017). In

other words, there are a minimum number of weak dynamic in-

teractions required between activator and target to generate bio-

logically relevant affinity and in vivo function. Thismechanism fits

nicely with the dynamic and fuzzy binding of acidic activators to

Med15, and presumably other coactivator targets, as well as the

finding that AD-coactivator binding is driven in part by a favor-

able entropy change (Pacheco et al., 2018; Tuttle et al., 2018).

Importantly, our results explain the known length-dependence

of function for ADs and the relationship of amino acid composi-

tion to function—the probability of multiple acidic-hydrophobic

clusters is highest in peptides with appropriate amino acid

composition. Our results that functional ADs are R9 residues

in length are also in agreement with this mechanism.

These new results, combined with earlier work, show that

functional acidic ADs (1) consist of a disordered polypeptide

with biased amino acid composition, (2) typically containmultiple

clusters of hydrophobic residues in the background of an acidic

polypeptide, (3) are enriched for specific short dipeptide se-

quences and depleted of others, (4) have less disorder and

more helical propensity than surrounding sequences that facili-

tate the presentation of their hydrophobic residues to interacting

partners, and (5) are typically of length R9 residues. Taken

together, our characterization fits with a fuzzy-binding mecha-

nismwhere the interactions take place in a dynamic environment

resembling a hydrophobic cloud rather than combinations of

sequence-specific interactions.

Tests of our optimized model showed that it can accurately

identify acidic ADs and pinpoint functionally important residues

within transcription factors. For example, in silico mutagenesis

of the Gcn4 cAD to every possible residue and predicting the

https://adpred.fredhutch.org
https://adpred.fredhutch.org
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effect on AD probability gave results remarkably consistent with

extensive experimental analysis. ADpred also recognized well-

characterized ADs within other yeast, Drosophila and human

factors. However, several findings showed that sequences with

potential AD function are not exclusive to transcription activa-

tors. First, we found predicted ADs within regions not known to

function as ADs including some structured protein regions. Sec-

ond, while we found that these AD-like peptides are modestly

enriched in yeast transcription factors compared to the prote-

ome, they are not enriched in Drosophila or human transcription

factors. This may indicate that acidic ADs are not as common

among human transcription factors compared with yeast factors

and provides a path for characterization of these other AD types.

In combination, our results demonstrate that AD function re-

quires that the peptide be located in the proper protein context

and that not all proteins having an acidic AD-type sequence

will work as activators. Recognition of these ‘‘false-positives’’

when screening the proteome will require additional information.

For example, ADpred was trained on short random sequences,

which are likely to be disordered. Identification of true ADs in

transcription factors will likely be more accurate if only disor-

dered regions are considered. It is important to note that our

screen used a TATA-containing inducible promoter. Earlier

studies showed that enhancers, the DNA targets of activators,

can have specificity for a certain promoter type and that coacti-

vator requirements can vary dependent on the gene regulatory

region (Butler and Kadonaga, 2001; Haberle et al., 2019).

Some yeast acidic activators, such as Gal4, work in all eukary-

otes, and the ADs we have isolated here have similar properties

and are likely of this class. In contrast, some higher eukaryotic

cell-type-specific activators bind particular coactivator targets

using a sequence-specific and conventional protein-protein

interface that likely have different sequence requirements (De

Guzman et al., 2006). It will be of great interest in future work

to repeat the screen using promoters with different coactivator

requirements and promoter sequence elements to determine

whether this setup changes the sequence features necessary

for transcription activation. It will also be of interest to test how

predictions of AD function correlate with the ability to form con-

densates—a property associated with at least some ADs

(Hahn, 2018).
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and NIH (P30 CA015704) to FredHutch genomics and computational shared

resource.

AUTHOR CONTRIBUTIONS
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designed the experiments. A.E., L.W., and J.F. did the wet lab work. A.E., L.K.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

3-Amino 1,2,4-Triazole Sigma-Aldrich A-8056

Sulfomeutron methyl Sigma-Aldrich 34224

Deposited Data

Raw DNA sequencing data of AD-positive

and negative datasets

NCBI Sequence Read Archive (SRA) SAMN14330228

Experimental Models: Organisms/Strains

Saccharomyces cerevisiae strain SHY1018 Steven Petesch (FredHutch) mat alpha ade2::hisG leu2 delta 0 lys2 delta

0 met15 delta 0 trp1 delta 63 ura3 delta

0 gcn4 delta::KanMX, Ch I integrated

URA3::ARG3-CYC1p-eGFP

Oligonucleotides

DNA oligonucleotides Integrated DNA technologies Sequences given in Table S2; STAR

Methods

nextera i7 barcodes Illumina UDP0001-UDP0096

Recombinant DNA

plasmid pLH365 Linda Warfield (FredHutch) ARS CEN LEU2 + 1 Kb upstream DNA and

the coding sequence for S cerevisiae Gcn4

residues 132-281. Relevant sequence in

STAR Methods.

Software and Algorithms

Custom code and algorithms Ariel Erijman https://github.com/aerijman/

ADpred_publication

Logistic Regression algorithm https://scikit-learn.org/ LogisticRegressionCV function

Neural Network algorithm Chollet, 2015 Keras 2.1.6

Neural Network algorithm https://tensorflow.org Tensorflow

Neural Network algorithm Kingma and Ba, 2014 ADAM optimizer

Neural Network algorithm https://scikit-learn.org/ GridSearchCV method

Protein homology detection Zimmermann et al., 2018 HHpred

Disordered Protein Predictions Dosztányi, 2018 IUPred 1.0

Statistical Analysis https://SciPy.org scipy.stats.hypergeom

Secondary Structure Prediction Cuff and Barton, 2000 PSIPRED 4.0.1

Other

AMPure XP beads Beckman Coulter A63881

KOD extreme Polymerase emdmillipore 71975

Phusion polymerase New England BioLabs M0530S

RiboPure DNaseI ThermoFisher AM1926

Transcriptor First Strand cDNA

Synthesis Kit

Roche 04897030001

Power SYBR Green PCR Mater Mix ABI/ThermoFisher 4367659

Zirconia beads, 0.5 mm Research Products International 9834
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Steven

Hahn (shahn@fredhutch.org).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

S. cerevisiae reporter strain SHY1018 (From Steven Petesch, Fred Hutch) was derived from strain BY4705 (Brachmann et al., 1998)

and contained a deletion of the GCN4 gene, was reverted to HIS3+ (required for 3-AT selection) and contained a synthetic ARG3-

CYC1 promoter driving eGFP expression integrated into a gene desert region of Chromosome I with the following genotype: mata

ade2D::hisG leu2D0 lys2D0 met15D0 trp1D63 ura3D0 gcn4D::KanMX, Ch I integrated URA3::ARG3-CYC1p-eGFP. Strain SHY823

was used for qRT-PCR assays in tests of synthetic and natural AD-Gcn4 derivatives with genotype: mata ade2D::hisG his3D200

leu2D0 lys2D0 met15D0 trp1D63 ura3D0 gcn4D::KanMx

METHOD DETAILS

Design of the randomized libraries
For the first library, we computed the ratio of A, C, G, and T needed at each codon position to obtain a roughly equal probability for

encoding each of the 20 amino acids and a minimal probability for stop codons within our random 90-mer nucleotide sequence. In a

custom python script, weminimized an objective function using the ‘‘basin hopping’’ algorithm (Wales and Doye, 1997) implemented

in the Python scientific library scipy (Oliphant, 2007). The objective function is the Euclidean distance from equal representation of all

20 amino acids (Pr(aa) = 0.05) and an absence of stop codons (Pr(stop) = 0). The goal for the second library was to obtain amino acid

target probabilities equal to the average observed in disordered regions. We used the same Python script to compute the optimal

ratios of A, C, G, and T to minimize the Euclidean distance with target and predicted probabilities.

Oligonucleotides containing 30 repeats of the randomized codons (see below) were ordered from Integrated DNA Technologies

(Coralville, IA). Each of the three codon positions contains a defined ratio of A/C/G/T to generate the desired bias. The oligonucle-

otides were extended in a PCR reaction to add 40 bp identity on each end to plasmid pLH365 (see below). This plasmid was derived

from the ARS CEN LEU2 vector pRS315 and contains 1 Kb upstreamDNA and the coding sequence for Gcn4 residues 132-281. This

upstreamDNA contains all knownGcn4 promoter and translational regulatory elements. The plasmid was digestedwith SbfI andNotI

and 4 mg of linearized vector, and 12 mg of the PCR products was transformed to electrocompetent yeast strain SHY1018 so that

in vivo homologous recombination inserted the randomized 30-mers into the N terminus of Gcn4 (Benatuil et al., 2010). Ten trans-

formations were run in parallel to produce a library of �2x107 clones.

FACS analysis, library DNA isolation and DNA sequencing
Cells containing the two libraries were separately screened by FACS. Prior to FACS analysis, 10 mL (�108 cells) of the glycerol stock

were diluted into 250 mL glucose complete media without leucine and grown to saturation, then diluted to OD600 = 0.3 in synthetic

complete media (Donczew et al., 2020) containing 3 mM 3-Amino Triazole but without leucine, uracil and histidine and. After 14-19

hours, cells were washed and diluted in double distilled water to�107/ml and FACS sorted in a FacsAriaII instrument. A threshold of

RU of fluorescence was set on the upper extreme of the negative sample. Cells with higher values of fluorescence than the threshold

were sorted into 4 different gates and �0.5-1 x107 cells were collected. Sorted cells were collected by centrifugation for 1 min and

resuspended in 1-5ml of synthetic complete glucose media without leucine. Cells were grown overnight, then diluted to OD600 = 0.3

in 25 mL and grown overnight. 20 mL cells were harvested by centrifugation, washed with 10 mL H2O and resuspended in 4 mL TE

buffer. 2.5 mL Zr-SiO2 beads were added and the suspension shaken 7X in a mini Bead Beater (Biospec products) for 3 minutes at

maximum speedwith 5min rests on ice between shaking cycles. Once cell lysis reached 70%–90%, the supernatant was transferred

to a 15 mL falcon tube with 4 mL of Phenol/CHCl3 mixture, vortexed for 30 s and centrifuged at 4200 rpm for 15 minutes. The su-

pernatant was transferred into microcentrifuge tubes and centrifuged at maximum speed for 10 minutes. The aqueous phase was

transferred to new tubes and extracted with an equal volume of chloroform. The organic layer was extracted with an equal volume

of water and the two aqueous fractions were combined and ethanol precipitated and treated with RNaseA to generate the plasmid

DNA libraries. 2 mL of the DNA libraries (2-193 10�7 M plasmid DNA) was amplified for sequencing in a reaction with 20 nM forward

and reverse primers, 0.2 mM dNTPs and 0.04 U/ml of Phusion enzyme in a 50 mL reaction. DNA from FACS-sorted bins 1-4 were

barcoded using Illumina nextera i7 barcodes. The PCR product was purified with AMPure beads (1.8 mL beads/ml PCR product) ac-

cording to manufacturer instructions and eluted in 50 mL TE. The DNA concentration was measured with a picogreen assay and DNA

sequencing was performed on an Illumina HiSeq instrument. After FACS analysis and DNA sequencing, sequences from both li-

braries were combined into a single dataset to increase the number of samples.

Data processing for machine learning
All procedures are implemented in custom python and bash scripts. Reads 1 and 2 from paired-end sequencing were paired with

FLASH (Magoc and Salzberg, 2011). We filtered out sequences longer than 90 base pairs, with sequencing quality PHRED score

less than 30 for a given base, with frameshifts, or without start or stop codons. Paired nucleotide sequences were translated to amino

acids. Sequence clustering (Edgar, 2010) was applied to minimize redundancy in the libraries (with minimum sequence identity of

80% per cluster). Each cluster was represented by its most frequent member sequence. Each such sequence is included in the final

reduced dataset and the total number of reads in bins 1 to 4 and background correspond to the sum of reads of all members of the

cluster. For an initial experimental validation, an activator enrichment score was calculated for each sequence in the final dataset as
Molecular Cell 78, 1–13.e1–e6, June 4, 2020 e2
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the summation of the number of reads in each bin, multiplied by coefficients (coeffbin) that correspond to the mean value of fluores-

cence of each bin (see section below):

Score =

P4
bin= 1readsbin 3 coeffbin

readsneg

Here, readsneg stands for the number of reads in the AD-negative set, which comprises all reads from the unsorted background library

minus any AD sequences found in FACS bins 1 to 4.

Machine learning analysis
The redundancy-filtered set of sequences with read counts in bins 1 to 4 and background were split into positive (AD-positive) and

negative (AD-negative) sets. The AD-negative set contains all sequences in the background library except those found within FACS

bins 1 to 4. The positive set contains all sequences with at least one read in total in bins 2 to 4. Omitting sequences that were only

found in bin 1 improved model performance, presumably by eliminating false positives. Charges were computed for each sequence

as the summation of amino acid frequencies multiplied by a coefficient where (E,D = �1; K,R = 1 and H = 0.5).

For Figure 2A, we compared the sequence composition between the positive and negative sets by computing the log-odds score

for each sequence and plotting its distribution for the two libraries. The log odds score for each sequence was calculated as the sum

of the log enrichments of each of the 20 amino acids in the sequences, where enrichment is the ratio of amino acid frequencies in the

AD-positive versus the AD-negative sequence sets. Positive scores indicate an amino acid composition similar to the AD-positive set

while negative scores indicate a composition similar to the AD-negative set. Denoting with aai the i’th amino acid in the sequence,

with f+
aai
the averaged frequency of the amino acid aai in the positive set and with f�

aai
the frequency in the negative set, the log odds

score of a polypeptide sequence is:

log� odds score=
X20
aa=1

log

�
f+
aa

�
f�
aa

�
:faa

In Figure 2B, we trained a logistic regression model with L2 regularization (l= 3:9 10�3 was chosen from a grid of 40 default values

provided in LogisticRegressionCV function from scikit-learn package) to predict whether a sequence is AD-positive or AD-negative.

Themodel was evaluated using 5-fold cross-validation. This required optimizing 21 parameters, one for each amino acid frequency in

the sequence and one offset. For Figure 2C, we trained a logistic regression model to predict AD function using the 400-dimensional

dipeptides composition instead of the 20-dimensional single amino acid composition.

To assess the importance of specific dipeptides for AD function, we performed 400 likelihood ratio tests, each comparing the full

model with models lacking one dipeptide feature. Dipeptides with significance p-values below 0.001 are indicated in Figure 2C by

their base 10 logarithm.We also built alternative AD score distributions by flipping the coefficients of a dipeptide to every other dipep-

tide and measuring the performance of these models in the test and validation datasets (Figure S1B). We repeated this for all dipep-

tides, or the specific dipeptides shown, and compared the distribution visually with boxplots.

The deep neural network for ADpred (Figure 3) was implemented using Keras 2.1.6 (Chollet, 2015) with a TensorFlow (https://

tensorflow.org) backend. Briefly, the input was composed of sequence and secondary structure (H, E and –, for Helix, b sheet

and random coil from PSIPRED 4.0.1) in a one-hot encoded matrix of dimension 30 by 23. This input was fed into a model made

up of a convolutional layer, two dense layers and the output dense layer. The convolution layer had 29 filters with filter size 6x23,

the first hidden dense layer had 100 neurons and the second hidden layer had 30 neurons. Each layer had a softplus activity

(logð1 + exÞ). The hidden layers were regularized with L2 regularization (l = 0.001) and dropout (p = 0.5) layers. The final output

layer had a single neuron with a sigmoid activation function and was used to compute the final probability for AD function

prediction.

Deep learning models were trained with the ADAM optimizer (Kingma and Ba, 2014) using the binary cross entropy loss function,

and the model’s performance was analyzed using AUPRC (area under a precision-recall curve), which corrects for skewed class

sizes and is a common metric used in classification tasks. Each epoch was split into 250 batches. At the beginning of each epoch,

we randomly drew an equal number of positive and negative samples from the original dataset. Hyperparameters (batch size, number

of epochs, optimization algorithm, learning rate and momentum, weight initialization, activation functions, drop out probabilities and

convolutional filter properties) were optimized withGridSearchCVmethod from scikit-learn. Briefly, for each combination of features

(amino acid sequence, secondary structure and disorder), the complete dataset was split into 10 parts. 8 were used to train the

models, 1 to optimize the hyperparameters and 1 to test the model. This was repeated 10 times for each hyperparameter setting,

randomly initializing the weights of the network. Each of the 10 parts was used for testing and each part for validation exactly one

time. At each of these 10 iterations, average precision and recall and standard deviation of the mean were measured on the test

set (for the 10 random initializations). Figure 3C shows the results of applying such procedure. To train ADpred, each hyperparameter

was fixed to the mean of the optimum over its 10 values (detailed in the previous paragraph). Then the complete set was split again

into 1 part as a test set and 9 parts for training. The best model over 100 random initialization of the weights was chosen based on its

AUPRC score on the test set.
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For Figure 4A, all residues of a cAD 30-mer were mutated to all other 19 amino acids and ADpred probability was computed. In

Figure 4B the same approach was applied to cAD derivatives, and ADpred results were compared to experimental results (Warfield

et al., 2014).

To search for AD-regions in full protein sequences, we rolled a 30-residue longwindow over the entire sequences and assigned the

score to the residue in themiddle (the 16th position in the 30-mer). Ordered domains were obtained fromHHpred (Zimmermann et al.,

2018) and the d2p2.pro webserver (Oates et al., 2013).

Analysis of ADpred dependence on amino acid composition
To experimentally test ADpred and to demonstrate that the model captures more than the amino acid composition of input se-

quences, we designed 30-mers with the same amino acid composition (and hence log-odds scores, Figure 2A) but in the opposite

extremes of the scale of ADpred probabilities. We picked sequences from low to high log-odds scores (A to E in Figure 6C) and

permuted the order of amino acids in each of these sequences 10,000 times. We sorted each library of 10,000 sequences by their

ADpred probabilities. We then selected peptides with high and low prediction scores and tested them for in vivo function by fusion to

the Gcn4 DNA binding domain and analysis by RT qPCR.

Proteome analysis for ADs
To search for ADs in full length yeast protein sequences, awindowof 30 residueswas scanned along all annotated protein sequences in

yeast (data fromSaccharomycesGenomeDatabase). and theADpredprobability for thewindowwas assigned to the central amino acid

in the window (the 16th). We calculated p-values for the enrichment of ADs in the set of transcription factors compared to the yeast pro-

teome with the hypergeometric test as follows. The summed lengths M of all proteins in the proteome corresponds to the population

size, and the summed lengthN of all transcription factor sequences corresponds to the ‘‘labeled’’ part of the population. Siteswith five or

more contiguous residues with a scoreR 0.8 correspond to the samples drawn. Suppose there arem such sites, n of which lie within

transcription factors. The p-value for the hypergeometric test is the probability to obtain k or more sites within the transcription factors.

The enrichment is computed as

enrichment =
n=m

N=M

and the p-value corresponds to:

p� value=
XN
i =n

�
N
i

��
M� N
m� i

�
�
M
m

�

We used the implementation as survival function in scipy.stats.hypergeom. Disorder and secondary structure predictions were

calculated with PSIPRED 4.0.1 (Cuff and Barton, 2000) and IUPred 1.0 (Dosztányi, 2018).

K-mer analysis of protein sequences
In our first approach to examine the length requirements of ADs (Figure S4), we searched for protein regions that have the highest

impact on theADpred score. For each protein of interest, we extracted all overlapping k-mers of a fixed length k, for k = 1 to 30. These

k-mers were computationally inserted into neutral N-terminal C-terminal 30 residue flanking sequences that showed negligible

ADpred scores of around 0. For each length class k, the k-mer with the maximum ADpred score was identified and plotted

together with its ADpred score (Figure S4). The sequences used for the adapters are TNSANAANASASSQAGQQATQNQNTAQQNG

(N-terminal) and GNGNQNQTTSTSNASANANSGSQGTGSSSQ (C-terminal).

Analysis of AD length requirements
In our second approach to examine the length requirements of ADs (Figure 6B), sequences of varying lengths, from 1 to 40 residues

long, were simulated from a random uniform distribution with equal probability for all 20 amino acids (Pr(aa) = 0.05). For each length,

10,000 sequences were sampled and computationally inserted between the constant ‘‘C’’ and ‘‘N’’ terminal 30-mer flanking se-

quences, neutral to ADpred, used in the above k-mer analysis. The number of sequences with ADpred score R 0.8 from the

10,000 sampled sequences are reported and plotted as bar plot in Figure 6B.

Test of the 9aa TAD motif
Occurrences of the 9aa motif for both the higher and lower stringency versions of the motif (Piskacek et al., 2007) were searched

using the re python library for regular expressions (Prosite syntax): [MDENQSTYG]{KRHCGP}[ILVFWM]{KRHCGP}{CGP}

{KRHCGP}[ILVFWM] [ILVFWMAY]{KRHC} and [MDENQSTYCPGA]X[ILVFWMAY]{KRHCGP}{CGP}{CGP}[ILVFWMAY]XX)
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ADpred web server
Protein sequences can be analyzed using ADpred at the website: https://adpred.fredhutch.org.

Randomized oligonucleotide sequences
Shown below are the two oligonucleotides used for generation of randomized 30-mers fused to the N terminus of the Gcn4 linker and

DNA binding region.

Oligo 1: optimized for equal ratios

50 - CAATTTGTCTGCGGCCGCAAATAAATTAAATACAAATAAAATGTCTGCA [(ratio 1)(ratio 2)(ratio 3)]30 GGCGACAATGACATT

CCTGCAGGCACTGACGATG– 30

A,C,G,T ratios at the three codon positions were: ratio 1 (0.295, 0.230, 0.248, 0.227), ratio 2 (0.323, 0.258, 0.245, 0.174), ratio 3

(0.000, 0.286, 0.424, 0.289)

Oligo 2: optimized for disordered enriched regions

50 - CAATTTGTCTGCGGCCGCAAATAAATTAAATACAAATAAAATGTCTGCA [(ratio 1)(ratio 2)(ratio 3)]30 GGCGACAATGACATTC

CTGCAGGCACTGACGATG– 30

A,C,G,T ratios at the three codon positions were: ratio 1 (0.312, 0.084, 0.406, 0.198), ratio 2 (0.372, 0.158, 0.177, 0.293), ratio 3

(0.254, 0.241, 0.265, 0.241)

These oligos were PCR amplified with the following primers to insert 40 bp identity on each end with pLH365:

HomoRec_pLH365_AD-Gcn4_LongF:

ccctatactatcattaattaaatcattattattactaaagttttgtttaccaatttgtctGCGGCCGCaaataaattaaatacaaataaaatgtctgc

HomoRec_pLH365_AD-Gcn4_LongR:

ggtaccagagaaacttcttcagtggattcaattgccttatcagccaatgaaacatcgtcagtgcctgcaggaatgtcattgtcgcc

Randomized oligos were amplified using 20 ng PAGE-purified DNA, 400 nM HomoRec amplification oligos, 0.2 mM dNTPs, 1X

Phusion buffer, and 1.3 U Phusion polymerase (NE Biolabs) and the cycling program: 95 deg 60 s, (95 deg 30 s, 60 deg 60 s, 75

deg 90 s) X35, 72 deg 4 min. PCR products were purified on AMPure XP beads (Beckman Coulter). The vector plasmid, pLH365,

was prepared by digestion with SbfI and NotI, and purified on AMPure XP beads. The concentration of pLH365 with the randomized

oligo insert in the DNA preparation was calculated by qPCR using primers: fwd (cctttctgtcaaattatccagg) and rev (ccgcagacaaattgg-

taaac). 4 mg linearized pLH365 (6.1 nM final) and 12 mg PCR product (56 nM final) were co-transformed by electroporation (Benatuil

et al., 2010) to yeast strain SHY1018 (see below). For each randomized oligo construct, ten transformations were performed in par-

allel to create a library of �2x107 clones. Transformed cells were grown to saturation in glucose complete media without leucine (1-

3 days), re-diluted to OD600 = 0.3 and grown to OD600�1-1.5. Glycerol was added to 20% final and cells frozen in liquid nitrogen and

stored at �80C in 10 mL aliquots.

pLH365 vector sequence

Shown is the relevant promoter and coding sequence of pLH365 into which the randomized 30-mers and the 30 residue test se-

quences were cloned. (nnn)30 indicates the site of oligo insertions. The Gcn4 coding sequence is capitalized and encodes:

MSA-(nnn)30 – Gcn4 (125-281)-3xFlag. Not1 and Sbf1 restriction sites are shown in italics. The coding sequence for 3xFlag is in

bold type.

ttatccaggtttactcgccaataaaaatttccctatactatcattaattaaatcattattattactaaagttttgtttaccaatttgtctgcggccgcaaataaattaaatacaaataaa

ATGTCTGCA(nnn)30GGCGACAATGACATTCCTGCAGGCACTGACGATGTTTCATTGGCTGATAAGGCAATTGAATCCACTGAA

GAAGTTTCTCTGGTACCATCCAATCTGGAAGTCTCGACAACTTCATTCTTACCCACTCCTGTTCTAGAAGATGCTAAACTGACT

CAAACAAGAAAGGTTAAGAAACCAAATTCAGTCGTTAAGAAGTCACATCATGTTGGAAAGGATGACGAATCGAGACTGGATCA

TCTAGGTGTTGTTGCTTACAACCGCAAACAGCGTTCGATTCCACTTTCTCCAATTGTGCCCGAATCCAGTGATCCTGCTGCTC

TAAAACGTGCTAGAAACACTGAAGCCGCCAGGCGTTCTCGTGCGAGAAAGTTGCAAAGAATGAAACAACTTGAAGACAAGGT

TGAAGAATTGCTTTCGAAAAATTATCACTTGGAAAATGAGGTTGCCAGATTAAAGAAATTAGTTGGCGAACGCATGGACTACAA

AGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGACAAAtga

RNA isolation

Cell cultures were grown in duplicate at 30�C to OD600 0.5 – 0.8 in 2% dextrose synthetic medium lacking leucine, isoleucine, and

valine. Cells were treated with 0.5 mg/ml SM for 90 minutes to induce amino acid starvation. Following induction, cells from a

10 mL culture were collected by centrifugation and washed with 5 mL sterile water. The pellets were resuspended in 0.4 mL TES

(10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS) then mixed thoroughly with 0.4 mL acid phenol (Ambion, AM9722), and incubated

for 1 hour at 65�, 1200 rpm in a Thermomixer R (Eppendorf). Phases were separated by centrifugation for 15 minutes at 4�, and
the aqueous phase was transferred to fresh tubes and extracted again with 0.4 mL acid phenol followed by 0.3 mL chloroform.

RNA was precipitated from a volume of 100 – 200 mL aqueous solution using 1/10 volume 3M sodium acetate and 3 volumes ethanol
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and collected by centrifugation for 15 minutes at 4�. The RNA pellets were washed with 1 mL 80% ethanol, dried in a SpeedVac

concentrator, and solubilized in 50 – 100 mL nuclease-free water (Ambion, AM9937). RNAs were stored at �80�.

QUANTIFICATION AND STATISTICAL ANALYSIS

qRT-PCR and quantification
RNA concentrations were determined using a NanoDrop spectrophotometer (ThermoFisher), and 15 mg RNA from each sample was

treatedwith RiboPure DNaseI (ThermoFisher, AM1926). The Transcriptor First Strand cDNASynthesis Kit (Roche, 04897030001) was

used to generate cDNA from 1.1 mgDNA-free RNA. Anchored oligo(dT)18 was annealed tomRNA for 10minutes at 65�, then extended
by Transcriptor RT for 1 hour at 50� before inactivation at 85� for 5 minutes. cDNAs were stored at �20�.
Gene-specific qPCR was performed in triplicate using primers near the 30 end of the genes. Five microliter reactions containing

Power SYBR Green PCR Mater Mix (ABI, 4367659) were assembled in 384-well plates (ABI, 4309849), and run on a QuantStudio

5 Real-Time PCR System (ABI). Relative amounts of DNA were calculated using a standard curve generated from serial dilutions

of purified yeast genomic DNA from 10 – 0.001 ng. The detected quantities of ARG3 and HIS4 mRNAs were normalized to ACT1

mRNA to determine RNA expression levels.
Primer Sequence

ACT1-FP1 TGGATTCCGGTGATGGTGTT

ACT1-RP1 TCAAAATGGCGTGAGGTAGAGA

F-RT-ARG3 TCGCATGTCTGAAATTCGGTAT

R-RT-ARG3 CATCGACAATATCGGAATCCATT

HIS4-FP1 GCACTGCCATTTTACCAAGTACTG

HIS4-RP1 CTTGGTGGAGATGCAAACACA
Enrichment score analysis
Values of fluorescence used to delimit the gates for sorting cells during selection with FACS were used to compute the activator

enrichment score. The relative fluorescence units (RFU) correspond to the ratio of the mean fluorescence unit (FU) of bin X over

bin1 (e.g., av.bin1 = (120+400) /2 = 260; av. bin2: (640+400)/2 = 520. Then 520/260 = 2).
bins lower upper RFU

1 120 400 1.000

2 400 640 2.000

3 640 1000 3.154

4 1010 7500 4.577
DATA AND CODE AVAILABILITY

Raw DNA sequence data generated during this study has been deposited at NCBI Sequence Read Archive (SRA) Database:

SAMN14330228. Custom code and algorithms can be found at: https://github.com/aerijman/ADpred_publication.
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Figure S1. A) Amino acid frequencies shown for the individual and pooled libraries compared to 
the yeast proteome. Residue colors are the same as in Fig 2. B) Distribution of AD scores 
obtained when a dipeptide coefficient is swapped to one of the 399 others (STAR Methods and 
text). Reverse: WD instead of DW etc. Related to Figs 1 and 2. 
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Figure S2. Prediction of important residues within yeast ADs and comparison with in vivo 
analysis. ADpred scores predicting the probability of AD function for all possible single amino 
acid mutations for (A) activation domain 1 (AD1) of Ino2, (B) AD2 of Ino2, and (C) the AD of 
Gal4. Red indicates a high and blue a low ADpred probability for the in-silico mutation. Wild 
type ADpred scores are indicated in the colorbar. For comparison, results from an in vivo 
analysis where double or triple alanine substitutions were assayed for AD function (Pacheco et 
al., 2018; Tuttle et al., 2019). Conserved hydrophobic and acidic residues that were mutated are 
shown in blue and green, respectively. Double or triple alanine mutations resulting in less than 
~ 50% AD function are marked with brackets below the x-label. For Ino2 AD1, conserved 
residues that ADpred predicts to be important but not tested experimentally are indicated by: 
*. For Gal4 mutations, residue F849 (marked with **) was mutated in conjunction with Y846 
and this derivative has 47% WT activity. Red asterisk marks Gal4 residues Y865 and Y867, which 
have ≥75% WT function when individually mutated to Ala.  Related to Fig 4. 
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Figure S3. Prediction of functionally important residues in synthetic ADs. Shown is analysis for 
20 high scoring synthetic ADs from the AD-positive set analyzed with the Integrated Gradients 
algorithm. Logos are drawn as in Fig 4C. Related to Fig 4. 
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Figure S4. AD length determined by k-mer analysis of two yeast transcription factors. For each 
k-mer length between 1 and 29, we extracted each k-mer contained in the sequence of yeast 
transcription factors Gcn4 (left) and Tog1 (right) and computationally inserted them between 
30 residue-long randomly generated flanking sequences that showed negligible ADpred scores: 
TNSANAANASASSQAGQQATQNQNTAQQNG (N-terminal) and 
GNGNQNQTTSTSNASANANSGSQGTGSSSQ (C-terminal). Top: For each length k, the k-mer with 
the maximum ADpred score is plotted. Bottom:  sequences are aligned relative to the WT 
sequence with blue bars indicating the ADpred score for each individual peptide when inserted 
in the neutral flanking sequence. Related to Fig 6. 
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Figure S5. Shown is the Integrated Gradient analysis of predicted AD-positive peptides with 
variable amino acid composition from Fig 6C. The sequence names A-E indicate composition 
from very unfavorable (A) to very favorable (E). Logos are plotted as in Figs 4 and S3. Related to 
Fig 6. 
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Figure S6. (A) Functional analysis of yeast and synthetic ADs. mRNA quantitation as in Figs. 6A 
and 6C but with quantitation of mRNA at the Gcn4-dependent ARG3 gene. Dotted line indicates 
2-fold activation above cells lacking Gcn4 (vector). Red bars = sequences with high ADpred 
probability; blue bars = low ADpred probability. All samples were treated with SM unless 
otherwise indicated. Dotted horizontal line: level of SM-induced transcription in cells lacking 
Gcn4. (B) Scatter plot of the logarithm of ADpred probabilities versus log-experimental RT qPCR 
results obtained on HIS4 and ARG3 mRNAs. Pearson correlation and p-value for a two-sided 
hypothesis test (where the null hypothesis corresponds to slope=0) are indicated. Related to Fig 
6. 
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Figure S7. Structural properties of regions surrounding predicted ADs in yeast transcription 
factors. Analysis was carried out as described for Fig 7. The upper plot represents analysis of 
the yeast proteome, the middle plot represents analysis of all yeast proteins classified as 
nuclear and the lower plot (reproduced from Fig 7B) is an analysis of 132 curated yeast 
transcription factors. Related to Fig 7. 
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Supplementary Tables  

Table S1 (recommend opening with text editor). See Fig 1. 
 Unsorted list of AD-positive and AD-negative sequences with:  

• List of AD-positive and negative sequences 
• Distribution of sequences in the background and the four FACS bins  
• Calculated AD-enrichment score 

 
Table S2  

• RT qPCR data and results. See Fig 6 and Fig S6. 
• Sequences of the natural and synthetic ADs tested in Fig 6. 

 
Table S3  

The sets of yeast, Drosophila and human transcription factors (TFs) used in the AD 
enrichment analysis of Fig 7A and Fig S7. TFs are listed as UniProt IDs (Bateman et al., 
2018). Yeast factors are a curated list combining data from mining the Saccharomyces 
Genome Database (Cherry et al., 2012), the set of TFs from Harbison (Harbison et al., 
2004) and from manual inspection of known functional properties of each factor. 
Human and drosophila TF lists were obtained from factors (Stampfel et al., 2015; 
Vaquerizas et al., 2009). See Fig 7. 
 

Table S4.  

Performance metrics of the regression and deep learning models. 

Method Feature  AUPRC AUROC Accuracy 

Regression Single aa frequency 0.9337 ± 0.0024 0.9452 ± 0.0020 0.8830 ± 0.0032 

Regression Dipeptide frequency 0.9418 ± 0.0018 0.9508 ± 0.0017 0.8915 ± 0.0039 

Deep NN Seq. 0.9741 ± 0.0007 0.9762 ± 0.0004 0.9303 ± 0.0008 

Deep NN Seq._Dis. 0.9726 ± 0.0008 0.9747 ± 0.0005 0.9268 ± 0.0010 

Deep NN Seq._SS. (ADpred) 0.9750 ± 0.0007 0.9768 ± 0.0005 0.9324 ± 0.0013 

Deep NN Seq._SS._Dis. 0.9729 ± 0.0006 0.9750 ± 0.0005 0.9285 ± 0.0011 
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