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SUMMARY

Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino acid
sequences, making it difficult to recognize features that promote their dynamic behavior, “fuzzy” interac-
tions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast
and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies
known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our
work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues near acidic side chains,
explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar
to avidity where a minimum number of weak dynamic interactions are required between activator and target
to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy

binding observed between acidic ADs and targets.

INTRODUCTION

Transcription activators stimulate transcription in response to
signaling pathways controlling processes such as development,
growth, and stress response (Levine et al., 2014; Spitz and
Furlong, 2012). Misregulation of activators or mutations within
them leads to many human diseases and syndromes (Bradner
et al., 2017). Each activator contains one or more transcription
activation domain (AD) that usually targets coactivators—com-
plexes that contact the basal transcription machinery and/or
have chromatin modifying activity (Erkina and Erkine, 2016;
Hahn and Young, 2011). AD-coactivator binding initiates a series
of events leading to productive transcription initiation, elonga-
tion, and reinitiation, in part through direct recruitment of factors
to gene regulatory regions (Ptashne and Gann, 1997). There are
hundreds of cellular activators with distinct ADs, but many target
a small number of coactivators including Mediator, TFIID, Swi/
Snf, SAGA, NuA4, and p300. Broadly acting ADs can target
several of these coactivators, allowing them to act on a large
set of genes with different coactivator requirements. ADs have
also been implicated in promoting the formation of intracellular
condensates at enhancers, triggering the recruitment of a large

dynamic network of coactivators and other factors responsible
for gene activation (Boija et al., 2018; Cho et al., 2018; Chong
et al., 2018; Shrinivas et al., 2019).

Early work demonstrated that: (1) eukaryotic activators are
modular, with separable DNA binding and activation domains
(Brent and Ptashne, 1985), (2) ADs have biased low complexity se-
quences that are enriched in certain residues, and that the primary
sequence of the AD is not critical (Cress and Triezenberg, 1991;
Hope and Struhl, 1986; Hope et al., 1988; Jackson et al., 1996;
Ma and Ptashne, 1987b, 1987a), (3) that most ADs are intrinsically
disordered (Brzovic et al., 2011; Currie et al., 2017; Hope et al.,
1988; Kussie et al., 1996; Sugase et al., 2007; Uesugi et al., 1997),
and (4) although specific AD targets are not always conserved, at
least some ADs can work across a broad spectrum of eukaryotes
(Fischer et al., 1988; Ma et al., 1988; Sadowski et al., 1988; Struhl,
1988). These properties suggested that activator function does
not involve precise molecular complementarity with their targets
but leaves open the important question of how any of the above
properties translate into a molecular mechanism (Sigler, 1988).

In many systems apart from transcription, molecular recogni-
tion by intrinsically disordered protein regions (IDRs) is mediated
by short linear motifs, 3-10 residue sequence motifs found in
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otherwise unrelated proteins (Nguyen Ba et al., 2012; Das et al.,
2012). In contrast, AD function is encoded by a wide range of
seemingly unrelated sequences. For example, although AD
sequences can be moderately conserved in closely related or-
thologs (Pacheco et al., 2018), no common sequence motif has
been found when comparing ADs from different transcription
factors. Small to moderate-scale screens for ADs using random
sequences of varying length found that ~1% of these sequences
encoded AD function, showing that no special sequence or
structure is required for function (Abedi et al., 2001; Erkine and
Gross, 2003; Ma and Ptashne, 1987b; Ravarani et al., 2018; Ru-
den et al., 1991). Other high throughput approaches, including
screening for the function of transcription factor protein frag-
ments and large-scale mutagenesis of a natural AD, also failed
to find conserved sequence motifs (Arnold et al., 2018; Staller
et al., 2018). Taken together, sequence features that correlate
with AD function include intrinsic disorder, the presence of
acidic, hydrophobic, and aromatic residues, low sequence
complexity, net negative charge (or lack of positive charge)
and, in some cases, alpha helix propensity.

Structural and molecular analysis showed that one prominent
class of activators, the acidic ADs, can recognize coactivators
using a dynamic “fuzzy” protein-protein interface. For example,
the yeast activator Gen4 contains tandem ADs that bind four
structured domains in the Mediator subunit Med15 (Brzovic
et al., 2011; Tuttle et al., 2018; Warfield et al., 2014). Structural
analysis showed that the individual AD-Med15 interactions are
dynamic, and the two factors appear to interact via a cloud of hy-
drophobicity rather than through sequence-specific interactions.
This binding mechanism does not require a unique sequence
motif for AD function. Because of this, it has been difficult to pre-
dict sequences with AD function and to understand which fea-
tures promote their dynamic binding properties and specificity.
For example, how does biased sequence lead to specificity in
molecular interactions, how specific are these sequences in
the proteome, and is this class of activators representative of
most activators? Understanding these fundamental properties
of ADs is essential toward progress in determining the molecular
basis of AD specificity for certain coactivators, dissecting mech-
anisms used in gene activation, and in predicting the conse-
quences of naturally occurring mutations on AD function.

In this work, we used a high throughput approach in yeast to
screen over a million synthetic peptide sequences and found large
numbers of AD-positive and AD-negative sequences. We analyzed
the resulting sequence sets using logistic regression and also
developed a deep neural network predictor of AD function, termed
ADpred. The combination of these two approaches allowed us to
identify sequence features that specify AD function in natural tran-
scription factors and, importantly, to relate these properties to a
mechanism for molecular recognition and function of acidic ADs.

RESULTS

A High-Throughput Screen for Synthetic Activation
Domains

To identify features encoding AD function, we isolated many syn-
thetic ADs using a high throughput approach. We reasoned that
gathering large sets of polypeptides with and without AD
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function would allow computational identification of physical
properties, sequence motifs, and other features associated with
ADs. Well-characterized natural ADs range from ~10 to >100
residues in length, but many are shorter than 30 residues. We
created libraries containing 30 randomized amino acids attached
to the N-terminal linker region and DNA-binding domain of yeast
Gcen4 (residues 132-281) (Figure 1A). Prior work showed that
this Gen4 derivative has no inherent AD function and that it can
accept a wide variety of natural and synthetic ADs, permitting acti-
vation of yeast Gcn4-dependent genes (Pacheco et al., 2018;
Warfield et al., 2014). We varied the ratio of the four DNA bases
separately at codon positions 1, 2, and 3 (LaBean and Kauffman,
1993), to avoid over or underrepresentation of amino acids with
large or small numbers of codons (e.g., leucine and tryptophan).
We made two libraries that either (1) slightly biased the random-
ized coding sequences toward residues normally enriched in
IDRs (Uversky, 2013), or (2) encoded a roughly equal representa-
tion of all amino acids (Figure S1A). Each library was separately
screened for AD function and the results presented below are
derived from pooling sequences in both libraries. Analysis of the
individual libraries yielded similar results (STAR Methods).

The individual libraries were transformed into a yeast reporter
strain lacking wild-type (WT) Gen4 and containing a Gen4-depen-
dent promoter driving GFP expression. Approximately 25 million
yeast transformants were obtained, and ~3.6 million contained un-
interrupted ORFs fused to Gcn4. To enrich for functional ADs, we
grew cells overnight in synthetic media lacking histidine and con-
taining 3-amino triazole (3-AT), a competitive inhibitor of the yeast
His3 protein. HIS3 transcription is stimulated by Gcn4, and only
cells containing functional Gen4 produce enough His3 protein to
efficiently grow under these conditions (Hope and Struhl, 1986). Af-
ter selection in 3-AT, we sorted cells by their GFP levels using fluo-
rescence-activated cell sorting (FACS). The distribution of fluores-
cence intensities shows that a subpopulation of cells expressed
GFP at levels near those of cells with WT Gen4 (Figure 1B). FACS
was used to split these GFP-expressing cells into four bins of
increasing fluorescence. We predicted that cells with the highest
GFP levels (bin 4) should contain the strongest ADs. DNA was ex-
tracted from cells in the individual GFP-expressing bins, and
sequenced. Only sequences containing a complete 30-residue
ORF were analyzed. Single point mutations and other
sequencing-related artifacts were minimized by clustering similar
sequences, allowing for up to 6 mismatches per sequence to be
included in the same cluster. The most frequent sequence in the
cluster was used as the cluster representative. The AD-negative
set contains peptide sequences from the background library
(before 3-AT selection and FACS screening) but with all AD-positive
sequences identified in bins 1-4 removed. The AD-positive set con-
sists of sequences found in bins 2-4. Sequences found only in bin 1
were omitted as they likely contain some false-positives. As aresult,
analysis of the combined libraries gave ~37,000 unique AD-posi-
tive sequences and ~1 x 10° AD-negative sequences (Table S1).

Most functional ADs were not found in a single bin but were
distributed among several bins, with the distribution presumably
reflecting AD strength. To check the accuracy of our FACS-
based screening, we first assigned an AD enrichment score to
each AD-positive sequence. This score measures the weighted
enrichment of a 30-mer sequence in bins 1 to 4 with respect to
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(A) Schematic of the high throughput screen for
ADs. Cells containing a GFP reporter driven by a
synthetic Gen4-dependent promoter were trans-
formed with libraries of random 30-mers fused to
the N terminus of the Gen4 DNA binding domain.
Cells with Gen4-AD function were enriched by
growth in 3-AT followed by FACS. DNA from the
libraries before 3-AT selection and FACS (back-
ground library) and from the four GFP-containing
bins were sequenced. The AD-negative set was
created by removing sequences found in bins 1-4
from the background library. TES, ADH1 termi-
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used only the relative amino acid fre-
quencies (between 0 and 1) in each posi-
tive or negative sequence. The model

36,669 AD Positives 2
1,016,412 AD Negatives

its number of occurrences in the library prior to 3-AT and FACS
screening (STAR Methods). Next, we selected 18 AD-positive
sequences with a wide range of enrichment scores and
measured GFP expression in the reporter strain by fluorescence
assay. We found that the calculated AD enrichment score corre-
lates well with the mean GFP fluorescence induced by individual
AD candidates, validating our activator screen (Figure 1C; Pear-
son correlation R = 0.79).

Amino Acid Composition and Specific Dipeptide
Sequences Are Important Predictors of AD Function
We first compared sequences from the AD-positive and negative
sets by calculating a log-odds score for each sequence based
on its amino acid composition. This score measures the similarity
of amino acid composition in any individual sequence compared
with the AD-positive and AD-negative sequence sets (STAR
Methods). We found that individual sequences in the positive
and negative sets have distinct but overlapping amino acid com-
positions (Figure 2A). This finding is consistent with earlier results
showing that intrinsically disordered protein regions and ADs
generally contain low complexity sequences that are biased to-
ward certain amino acids.

To quantify the contribution of amino acid composition to AD
function, we tested how well composition alone predicts func-
tion. We fit a logistic regression model for AD prediction that

4 6 8
AD Enrichment score

was trained with 90% of the AD-positive
and AD-negative data and tested with
10% held out data. Surprisingly, compo-
sition alone is a very strong predictor of
function with an area under the precision-recall curve (AUPRC)
score of 0.934 + 0.002 (accuracy of predictions: 0.883 =+
0.003), compared with a maximum possible AUPRC of 1.0 for
perfect predictions and 0.5 for random predictions. The logistic
regression coefficients from this model show the bias toward
specific residues in AD-positive sequences (Figure 2B). Consis-
tent with results from prior analysis of natural and synthetic AD
sequences (Cress and Triezenberg, 1991; Hope et al., 1988;
Ma and Ptashne, 1987b; Pacheco et al., 2018; Ravarani et al.,
2018) the regression coefficients showed that ADs identified in
our screen are depleted of positively charged residues (R, H,
and K), and enriched for negatively charged (D and E), hydropho-
bic and aromatic residues, particularly F and W.

While no unique sequence or short linear motif has been
recognized as conserved in natural ADs, it is possible that com-
binations of short heterogeneous sequence motifs contribute to
AD function. To explore this possibility, we developed a regres-
sion model that utilizes the frequencies of all 400 possible dipep-
tide sequences. The resulting logistic regression coefficients
from this analysis show the bias toward specific dipeptides
that are enriched or depleted in the synthetic ADs (Figure 2C).
Using dipeptide frequency instead of amino acid composition
improved model performance to an AUPRC score of 0.942 +
0.002 (accuracy of prediction: 0.891 + 0.004). Some dipeptides
are clearly enriched in ADs such as D or E followed by a

Molecular Cell 78, 1-13, June 4, 2020 3




Please cite this article in press as: Erijman et al., A High-Throughput Screen for Transcription Activation Domains Reveals Their Sequence Features and
Permits Prediction by Deep Learning, Molecular Cell (2020), https://doi.org/10.1016/j.molcel.2020.04.020

¢? CellPress

>
(o]

AD negative
AD positive

o

H

o
N
o

o
o
w
LR Coefficients
o

Frequency

N
1<}

0.00 I I

e e RHKDES TNQAVL IMFYWCGP
Log-likelihood score

c Dipeptide LR Coefficients
P
G
C
w
Y
3y
3 40
oL
=V @
[N
L Q 0
N
T -20
S
E
D
K
H
R

RHKDESTNQAVL IMFYWCGP

Second residue

Figure 2. Properties of Synthetic ADs

(A) Distribution of log-odds scores for sequences from the AD-positive (blue)
and AD-negative (orange) sets.

(B) Coefficients of amino acid frequencies derived from a logistic regression
model for AD probability. Blue, positive charge; red, negative charge; green,
hydrophobic/aromatic, cyan, polar; yellow, others.

(C) Dipeptide sequences contribute to AD function. Heatmap of coefficients
from a logistic regression model using only dipeptide frequencies. The first
amino acid in the dipeptide is on the y axis. Log1g p values are shown where p <
0.001. p values are from likelihood ratio tests using all 400 dipeptide regression
coefficients versus all but one.

See Figure S1.

hydrophobic residue, especially F or W (log p values from likeli-
hood ratio tests are shown inside the boxes in Figure 2C). The
reverse dipeptides (e.g., W followed by D or E) show a negligible
impact on the model performance (STAR Methods). Importantly,
we also found that certain dipeptides are strongly depleted in
ADs, such as an aliphatic followed by a positive or polar residue,
proline, or glycine (e.g., L-P), whereas the same was not true for
the reverse dipeptides (Figure 2C). This analysis suggests that
dipeptide sequences contribute to AD function over and above
the contribution from their amino acid composition.

To confirm that dipeptide sequences contribute to AD function,
we swapped individual dipeptide coefficients in the regression
model (e.g., the DW coefficient was swapped with all other coef-
ficients in 400 separate models) and used the new models to pre-
dict AD function (Figure S1B). We found that replacing the DW
coefficient (labeled Fwd) with every other coefficient in this matrix
decreases average model performance significantly, while re-
placing the WD coefficient (labeled Rev) has no appreciable ef-
fect on average model performance. Figure S1B also shows
that replacing coefficients for six similar dipeptides (EW, EV,
DV, DL, DF, and DY) also decreased model performance while
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replacement of the reverse peptide coefficients does not. We
also compared the performance of our regression model with a
previously proposed universal 9 amino acid AD sequence motif
(Piskacek et al., 2007) (https://www.med.muni.cz/9aaTAD/).
Both the regular and the more stringent 9aa sequence pattern
did not perform well with our experimental data, achieving accu-
racies of 0.57 and 0.60, respectively.

A Deep Learning Model for AD Prediction

To discover complex features that can contribute to AD functionin
an unbiased, agnostic fashion and to improve the accuracy of AD
predictions, we trained a deep-learning neural network model that
does not require prior knowledge of features contributing to AD
function (Schmidhuber, 2015). For example, this approach does
not impose a limit on either the size or the position of the functional
AD sequence within the 30-mer. The model inputs are the 30-res-
idue sequences from each peptide in the positive and negative
sets (20 values per position in one-hot encoding), predicted sec-
ondary structure (three values per position), and predicted disor-
der (one value) (Figure 3A). A series of 29 filters were used for
data convolution that allowed us to model associations between
residues at distant and variable positions. The resulting data are
analyzed using a dense neural network with two soft-sign layers
and the final output node yielding the probability of the input
sequence to possess AD function. During training, the weights of
the filters and other neural network connections are optimized,
correcting for animbalance of positives and negatives by subsam-
pling the same number of negatives down to the same number of
positives before each training epoch.

Figures 3B and 3C compare the performance of the best deep
learning and regression models. The best deep learning model,
termed ADpred, uses only amino acid sequence and predicted
secondary structure and shows great improvement in perfor-
mance over the dipeptide regression model with an AUPRC
score of 0.975 + 0.001 (accuracy 0.932 + 0.001). We found
that secondary structure but not disorder predictions modestly
improved model performance (Figure 3C). The striking improve-
ment in performance of the deep learning models over regres-
sion approaches suggests the existence of important features
associated with AD function in addition to bias in amino acid
composition and dipeptides sequences.

To evaluate the contribution of peptide charge for AD predic-
tion using the deep learning model, we compared average
charge per residue versus ADpred probabilities for both AD pos-
itive and negative sequences (Figure 3D). This analysis showed
that extreme positive or negative charge correlates well with pre-
dictions, but many peptides cannot be accurately predicted by
charge alone. For example, while we found few ADs with net
positive charge, a large number of negatively charged peptides
do not have AD function. This is consistent with the conclusions
above that other features, in addition to amino acid composition,
make important functional contributions.

ADpred ldentifies Sequence Features Important for AD
Function

To identify the sequence features used by ADpred to predict
function and to test the utility of ADpred on natural activators,
we first evaluated its performance on the Gcn4 central AD
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Figure 3. Convolutional Deep Neural Network Architecture and Per-
formance

(A) Input for each sequence consists of the 30-amino acid peptide sequence
and its predicted sequence features (secondary structure and/or intrinsic
disorder). A convolutional layer learns patterns characteristic of ADs inde-
pendent of their precise position in the AD sequence. The flattened outcome of
the convolution is used as an input for a dense two-layer-network with 100 and
30 neuron, respectively. The output layer gives the probability of AD function
for the input sequence.

(B) Analysis of model performance. The precision-recall curve compares the
performance of the linear regression model utilizing dipeptide frequencies and
the best deep learning model (ADpred) utilizing amino acid sequence and
secondary structure predictions.

(C) Comparison of several regression and deep learning models evaluated with
10-fold cross validation, with the lines corresponding to standard error of the
mean. dis., disorder predictions; seq., peptide sequence; ss, secondary
structure prediction (statistics from Table S4).

(D) Correlation between predictions of the deep learning model and the
average charge per residue of the 30mers. Dotted line represents peptide with
neutral average charge.

(cAD) where thousands of variants have been tested for in vivo
function (Jackson et al., 1996; Staller et al., 2018; Warfield
et al., 2014). We performed in silico saturation mutagenesis of
residues 108-137 of the cAD, changing every residue to every
other amino acid. We fed the resulting set of peptides to ADpred
to predict AD probability with the results shown as a heatmap in
Figure 4A. Remarkably, the in silico predictions of this single-res-
idue mutagenesis showed excellent correspondence with re-
sults from an analogous in vivo study (Warfield et al., 2014)

¢? CellPress

with a Pearson correlation of R = 0.82 (Figure 4B, left). We also
used ADpred to predict function for thousands of Gcn4 variants
used in a high throughput functional screen, most containing
multiple mutations within the cAD (Staller et al., 2018) (Figure 4B,
right). Again, there was good correspondence between predic-
tion and published in vivo results with Pearson correlation
R =0.57.

From this combined analysis, the importance of the three
Gcen4 residues that make direct contact with Med15 (W120,
L123, and F124; labeled in red in Figure 4A) are clearly apparent
as well as the lesser but noticeable impact of three other hydro-
phobic residues (F108, Y110, and L113; labeled in green) that
have been observed in vivo (Jackson et al., 1996; Staller et al.,
2018). Furthermore, our model predicts that insertion of posi-
tively charged residues are most likely to have a deleterious
impact on function when positioned near the key hydrophobic
residues, that insertions of additional hydrophobic residues
generally increase function, and that no single negatively
charged residue is important, in agreement with earlier in vivo
studies (Jackson et al., 1996; Staller et al., 2018; Warfield
et al., 2014). Using the same in silico mutagenesis approach,
we predicted important residues within yeast ADs from Ino2
and Gal4 (Figure S2). Again, we observe an excellent correspon-
dence between in silico predictions and experimental results
(Pacheco et al., 2018; Tuttle et al., 2019), showing that the
deep learning model is an accurate predictor of acidic AD
function.

ADs Generally Contain Clusters of Hydrophobic
Residues Rather Than Specific Sequence Motifs

For additional insight into sequence features that lead to the high
performance of the deep learning model, we analyzed the ADpred
results using Integrated Gradients (Ancona et al., 2018; Sundarar-
ajan et al., 2017), an algorithm that identifies positive and negative
features that contribute to a high prediction score. The results
from analysis of four representative yeast ADs is shown in Fig-
ure 4C, with the results presented as sequence logos. Figure S3
shows the Integrated Gradient analysis of 20 high-scoring syn-
thetic peptides from the high throughput screen (analysis of AD-
negative peptides returns empty logos). In contrast to earlier pre-
dictions (Piskacek et al., 2007; Warfield et al., 2014), we found no
evidence for ADs to contain defined sequence motifs of three or
more residues. Rather, a common feature is clusters of hydropho-
bic residues in the background of an acidic polypeptide. Recogni-
tion of this feature is likely a primary reason that ADpred performs
better than predictions based on amino acid composition alone.
Many strong natural ADs and the top scoring synthetic peptides
have multiple occurrences of this simple sequence pattern. In se-
quences with properly biased amino acid composition, the prob-
ability that this pattern occurs multiple times increases with the
length of the peptide and probably contributes to AD strength.

Recognition of Acidic ADs within Eukaryotic
Transcription Factors

We next used ADpred to analyze yeast, Drosophila, human, and
viral transcription factors for which in vivo AD function has
already been mapped (Figure 5). For this analysis, we used an
ADpred probability of >0.8 as a high confidence threshold. In
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Figure 4. Performance of ADpred on Yeast Activators

(A) ADpred predictions for all possible single amino acid mutations of the Gen4
central AD (cAD). An increase in ADpred score is darker red, decreases are
lighter red or blue. Wild-type cAD ADpred score is indicated in the colorbar.
Residues important for Gen4 function identified in prior work are colored red
and green in the Gcn4d sequence below the heatmap.

(B) Left: the AD activity of cAD derivatives measured in Warfield et al. (2014)
shows a high correlation with ADpred predictions (R = 0.82). ADpred proba-
bilities were transformed from (0,1) to (-, x) by the logit function. Right:
comparison of ADpred predictions with a large set of yeast Gen4 derivatives
(Staller et al., 2018). Experimental data plotted as raw activity values measured
under amino acid starvation conditions. Colors represent the density of points
from low density in blue to high density in red. The white line shows a K nearest
neighbor regression analysis (where Y is predicted by local interpolation of
values from the K nearest neighbors on X, using kNeighborsRegressor func-
tion from scikit-learn package) (R = 0.57).

(C) Predicted importance of individual residues for ADpred scores identified
using the Integrated Gradients algorithm (Ancona et al., 2018; Sundararajan
et al., 2017). Residue contributions in four selected yeast ADs are shown as
sequence logos (positive upward, negative downward) Residue colors are the
same as in Figure 2B.

See Figures S2 and S3.

the figure, blue peaks show AD predictions, yellow boxes indi-
cate experimentally validated AD function, and structured do-
mains are indicated by gray boxes. In many yeast factors
(Gen4, Met4, Ino2, Rap1, Gal4, and Rtg3), our model predicts
AD function coincident with known ADs (Figure 5A). One excep-
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tion is the Gcn4 N-terminal AD, where optimal AD function
requires a combination of four short hydrophobic clusters scat-
tered throughout the 100 amino acid-long N-terminal region
(Jackson et al., 1996; Tuttle et al., 2018). None of these four short
clusters can act as an AD on their own but they require the others
for in vivo function. Within this region, ADpred predicts function,
but with a probability <0.8. It seems likely that our model does
not give a high probability to this long AD because it was trained
on ADs of <30 residues. Another exception is Hap4 where the
three highest probability scores lie outside of a previously map-
ped AD region (see below).

Examination of Drosophila transcription factors readily identi-
fied three ADs (MTF-1, CG14451, and BTEB2) that were identi-
fied using a prior high throughput screen (Arnold et al., 2018)
(Figure 5B). In contrast, ADpred did not identify ADs in two other
Drosophila factors from the same screen (HLH3B in Figure 5B
and SAGE-not shown). One possibility is that these two factors
contain ADs of a different class compared with the ADs analyzed
here. Well-characterized ADs in the human and viral factors p53,
E2F1, MyoD, Hif2a, and VP16 were clearly recognized (Fig-
ure 5C). However, the ADs from SP1 are interesting exceptions.
SP1 contains two Q-rich ADs that are both required for maximum
function (Courey and Tjian, 1988), and SP1 does not function as
an activator in the yeast system (Ponticelli et al., 1995). Neither of
these Q-rich ADs are recognized by ADpred, confirming that
they are in a different class from the acidic ADs examined
here. In human c-Myc, ADpred does not recognize the
conserved Myc box 2 region, thought to be involved in transcrip-
tion activation. However, another region (residues 88-119)
recently shown to directly bind TBP and to be important for
Myc function (Wei et al., 2019) is identified by ADpred with a
high probability score. Finally, it is apparent from Figure 5 that
peptides with predicted AD function are not exclusive to disor-
dered regions. For example, Gal4, HLH3B, HIF2«, VP16, and
the transcription repressor ETV6 all have peptide sequences
with AD potential that are contained within regions of known or
predicted 3D structure.

Because ADpred identified several sequences with high con-
fidence of AD function in regions outside of mapped ADs (Fig-
ure 5), we tested whether these are false positives. An alternative
explanation is that these peptides have strong potential for AD
function but are not positioned in the proper context to function
in their natural setting; e.g., are in structured regions or are other-
wise inaccessible to the transcription machinery. 30-residue
segments containing several predicted yeast and Drosophila
ADs (indicated by red triangles in Figure 5) were fused to the
Gcn4 DNA binding domain. Function was assayed in vivo by
treating cells with sulfometuron methyl (SM) for 90 min to simu-
late amino acid starvation and to induce synthesis of Gcn4,
followed by RNA quantitation using gRT-PCR (Figure 6A; Table
S2). When assayed at the Gcn4-dependent HIS4 gene, a pre-
dicted AD from Gal4 (Gal4_A) (Ma and Ptashne, 1987a) and three
from Hap4 (Hap4_A,B,C), produced 3.7- to 8.6-fold higher tran-
scription compared with SM-treated cells lacking Gcn4 (labeled
“vector” in Figure 6A). At HIS4, we used activation of transcrip-
tion by >3-fold for scoring AD+ function (dashed lines in Fig-
ure 6). Our results show that these predicted ADs do not inher-
ently lack activity but can function as ADs in an appropriate
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containing predicted ADs into segments
of different lengths and computationally
inserted these k-mers into a randomized
neutral background that contained only
the residues S, T, N, Q, A, G that are

context. We also tested ADpred predictions for several
Drosophila factors in the yeast system. Consistent with our pre-
dictions, the ADs from MTF-1, CG14451, and BTEB2 all showed
in vivo AD function, while the regions previously identified as ADs
in vivo but not by ADpred, showed no AD function in yeast
(HLH3B and SAGE).

Length Dependence of Natural and Synthetic ADs

Our synthetic AD screen used randomized sequences of 30 res-
idues and ADpred uses a sliding window of 30 residues to
analyze sequences for AD function. However, our approach
did not require the ADs to be a specific length or at a particular
position within the 30-mer. For example, if some ADs are 10-res-
idues long, a 30-mer might contain one or more ADs. For this
reason, deep learning is a powerful way of pinpointing the AD se-
quences without any a priori knowledge of the AD position within
the 30-mer, nor how long, or how many ADs might be contained
in any one 30-mer.

neither strongly enriched or depleted in

ADs (Figures 2B and S4). For Gcn4, this
analysis identified two overlapping ADs, each 22-26 residues
long, that are a combination of hydrophobic residue clusters in
the N- and C-terminal ADs. In contrast, yeast factor Tog1, with
an uncharacterized AD, is predicted to contain a short 8-residue
sequence that defines its core AD.

Fourth, we used a combination of computational and func-
tional approaches to gauge how accurately ADpred predicts
the function of very short peptide sequences. We randomized
sequences of 1-40 residues in length (all amino acids had an
equal chance of being in the insert) and computationally inserted
these peptides into the middle of a neutral 60-mer containing
only the residues S, T, N, Q, A, G. 10,000 randomized insert se-
quences of each length, plus the constant flanking sequence,
were analyzed by ADpred. As expected, the fraction of predicted
ADs was zero for sequences shorter than 6 residues but rose
quickly for longer sequences (Figure 6B). We tested a few of
the short insert sequences for in vivo function and found that
the 7-mer and 8-mer sequences activated HIS4 transcription
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Figure 6. In Vivo Tests of ADpred Predic-
tions of Natural and Synthetic ADs
gRT-PCR quantitation of mRNA from the yeast
HIS4 gene, normalized to ACT1 mRNA. Dotted
lines indicate 3-fold activation above cells lacking
Gcn4 (vector). Cells contained the indicated AD
sequence (Table S2) fused to the Gen4 DBD in
vector pLH365 and were induced with SM for
90 min before MRNA quantitation. Gray bars, no
SM added, all others have SM; black bars, control
Gcn4 derivatives: WT Gen4 and the Gen4 cAD; red
bars, sequences predicted to have high probabil-
ity of AD function; blue bars, low probability of AD
function. Error bars represent standard error of
the mean (SEM).

(A) Tests of yeast and putative Drosophila ADs

from Figure 5.

(B) Length dependence of AD function. Right
graph shows the number of predicted ADs
recovered from 10,000 randomized sequences of
the indicated lengths. Left panel shows gRT-PCR
analysis of predicted ADs. The first number of the
sequence name indicates the length of the syn-

thetic AD (e.g., 9_188 is aninsert of 9 amino acids).
(C) Arrows point to regions where selected AD-
positive sequences were randomized and used to
search for one or two pairs of sequences with the
same amino acid composition but either high (+) or
low (—) ADpred scores. Left plot shows qRT-PCR
analysis of these randomized sequences.

Sequence pairs with identical log-odds scores are
labeled A-E as in the log-odds histogram followed
by 1 or 2; e.g., A1+/A1—, A2+/A2—, etc.

See also Figures S4, S5, and S6 and Table S2.
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<3-fold, while both 9-mers activated 4.5-fold. From our com-
bined results, we conclude that ADpred recognizes ADs of vari-
able length with practical length limits of ADs >9 to <30 resi-
dues in length. This minimum length requirement fits with our
published analysis of natural ADs, where AD function is often
spread out over 15-30 residues.

ADpred Can Overrule Strong Amino Acid

Composition Bias

As demonstrated above, amino acid sequence composition is
perhaps the most important factor determining the probability
of AD function, but other features also make important contribu-
tions. Given that a model using only sequence composition as a
feature reaches quite high accuracies, we asked whether the
ADpred predictions are dominated by sequence composition.
We selected sequences from our libraries containing a wide
range of log-odds scores for amino acid composition (labeled
Ato E in Figure 6C). For each selected sequence, we generated
a set of 10,000 randomly permuted 30-mer peptides and then
sorted them using ADpred. From this set, we selected one or
two pairs of sequences with identical amino acid composition
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but with high and low ADpred scores
(AD+ or AD—). Upon testing these pairs
of 30-mers for function at H/IS4 and using
activation of transcription by > 3-fold for
scoring AD+ function, all predictions were confirmed except for
one of two sequences tested with +10 log-odds score (Fig-
ure 6C). In this exception to our prediction, sequence E2+ has
a sequence composition extremely biased toward AD function
but only shows 2.6-fold activation. Combined, our results
demonstrate that ADpred can correctly predict function with
high accuracy even if the sequence composition is strongly
biased toward non-AD sequences and vice versa.

We used the Integrated Gradients algorithm to examine the
scrambled peptide sequences with variable amino acid compo-
sition used in Figure 6C (Figure S5). This analysis showed that
peptides confidently predicted to have AD function but, with un-
favorable amino acid composition, had separately clustered the
favorable and unfavorable residues away from each other. For
example, AD+ peptides with compositions labeled A and B
had positively charged residues segregated to the N terminus
while the acidic and aromatic residues were positioned in the
C terminus. This further validates our conclusion that short clus-
ters of hydrophobic residues in the background of an acidic poly-
peptide are important for function and that ADpred recognizes
functional sequences of less than 30-residues long.

D E
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Figure 7. Properties of Predicted AD Regions

(A) Tests for enrichment of predicted ADs in sets of yeast, Drosophila, and
human transcription factors (Table S3) compared to the complete proteomes
plotted against the minimum length threshold for calling an AD. The enrich-
ment p values from a Fisher test are shown below.

(B) Predicted disorder and helicity in and around predicted ADs from a set of 71
yeast transcription factors with ADs > 15 residues long (Table S3). To compare
properties of the ADs, which are of variable length, the average score for helical
and disordered content at the five central residues of the ADs were calculated
and shown graphically in a 5-residue window. Black thick line, median values;
gray, values between the 25" and 75™ percentile. Results are shown for a
cutoff of ADs 15 or greater residues in length where 71 ADs meeting this cri-
terion were found in the set of 132 yeast factors.

See also Table S3.

We also tested many of the above peptides for activation of
yeast ARGS3 transcription (Figure S6A). ARG3 is transcribed at
~7-fold lower rate compared to HIS4, and transcription of
ARGS3 is regulated by Gen4 and two repressors. Our prior studies
using AD derivatives at both promoters showed that HIS4 is
generally more permissive for AD function, perhaps because of
the more complex regulation and coactivator requirements at
ARGS3 (Pacheco et al., 2018; Tuttle et al., 2018). Because WT
Gcn4 shows lower levels of activation at ARG3 compared with
HIS4 (5.5-fold versus 14-fold), we set a threshold of 2-fold
activation for scoring AD function (Figure S6A). Of the four AD
predictions for yeast proteins outside of previously mapped
ADs, only one activated ARG3 >2-fold (Hap4A), but all
Drosophila proteins examined and 15 of 18 synthetic sequences
tested behaved as expected. Thus, our predictor performs well
but is less accurate on a promoter with more stringent AD re-

¢ CellP’ress

quirements (77% accuracy at ARG3 compared to 93% at
HIS4). Nevertheless, there is a high correlation of experimental
versus predicted values at both HIS4 and ARG3 with R = 0.85
and 0.67, respectively (Figure S6B).

Acidic ADs Are Enriched in Yeast but Not in Drosophila
or Human Transcription Factors

To further explore properties of natural ADs, we applied the deep
learning model to the entire yeast, Drosophila and human pro-
teomes. We characterized protein regions as AD-containing
(ADpred probability >0.8) and by the length of the predicted
AD region. We compared predictions within the proteome to pre-
dictions on a subset of 132 yeast transcription factors, some of
which are known activators, and to sets of 754 Drosophila and
1043 human transcription factors (Bateman et al., 2019; Stamp-
fel et al., 2015; Vaquerizas et al., 2009) (Figure 7A; Table S3). We
observed a modest but clear enrichment of 20-30 residue long
acidic ADs in yeast transcription factors (p < 0.01). In contrast,
we found no enrichment of acidic ADs in the set of Drosophila
or human transcription factors. While this latter result seems sur-
prising, it may indicate that metazoan transcription factors most
often use a different type of AD. The result that acidic AD-type
peptides exist in non-transcription factors is also in agreement
with our findings above that not all peptides with inherent AD
function are in a context that allows them to function as
activators.

ADs Show Higher Helical Propensity and Less Disorder
Than Surrounding Sequences from In Silico Analysis
Finally, we explored whether sequences within the proteome
having predicted AD function are enriched for disorder or sec-
ondary structure elements. For this analysis we used a cutoff
of ADs > 15 residues in length. Our analysis examined the 25™,
50™, and 75" percentiles of the predicted helical propensity or
disorder within 50 residues N and C-terminal to the predicted
AD. To compare properties of the ADs, which are of variable
length, we plotted the average score for helical and disordered
content at the five central residues of the identified ADs indepen-
dent of their length and represented this score graphically in a
5-residue window. The predicted ADs from a total of 71 yeast
transcription factors have, on average, lower disorder and higher
helical propensity compared to the surrounding sequence
(Figure 7B). Consistent with prior expectations, our analysis
suggests that many natural ADs are peptides with alpha helical
propensity located within disordered regions. We found this
same pattern whether analyzing the entire yeast proteome, the
subset of nuclear proteins, or only yeast transcription factors
(Figure S7). We therefore suggest that the observed pattern of
helicity and disorder might be some inherent property of the
acidic “AD-type peptides” and their normal protein environment,
whether or not they are transcription factors.

DISCUSSION
Since their discovery and initial characterization, the nature of
transcription activation domains has been enigmatic (Ptashne

and Gann, 1990; Sigler, 1988; Struhl, 1987). Nearly all character-
ized ADs are intrinsically disordered, have no obvious common
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sequence motif, and yet the function of some activators is
conserved from yeast to humans. Together, these and other
properties suggested that the function of activators does not
require precise molecular interactions of ADs with their targets.
In agreement with this conclusion, structural studies showed
that one class of activators, the acidic ADs, can interact with their
targets via a dynamic fuzzy interface. (Brzovic et al., 2011; Tuttle
et al., 2018). This prior work has left unanswered several impor-
tant questions including: (1) What sequence properties of the
activator promote this molecular recognition mechanism? (2)
How many transcription factors use this mechanism? (3) Can
these sequence features be recognized computationally and
how common are these features in transcription factors? and
(4) Is this molecular recognition mechanism used outside of the
transcription system? In this work, we generated large sets of
synthetic activators and non-activators and, in combination
with two machine learning approaches, developed an accurate
predictor of acidic AD function (ADpred; https://adpred.
fredhutch.org). Working backward from the predictors allowed
us to identify, in a systematic way, properties and sequence
features driving AD function and to relate these properties to a
molecular recognition mechanism.

Randomized libraries have been screened for AD function in
earlier work (Abedi et al., 2001; Erkine and Gross, 2003; Ma
and Ptashne, 1987b; Ravarani et al., 2018). However, our new
approach identified ~60-fold higher numbers of ADs and a
much larger number of non-ADs, an important starting point for
systematic analysis of functional properties. For example, a prior
machine learning approach used 926 synthetic AD variants that
gave an AD prediction AUROC score of 0.773 (in comparison to
our AUROC of 0.977; Table S4) and attributed different relative
importance to some of the features described here (Ravarani
et al., 2018).

As inferred from earlier studies, we found a striking difference
in amino acid composition between the AD-containing and non-
AD sequences. A logistic regression approach based solely on
amino acid composition was surprisingly accurate (AUPRC
0.934), showing that composition is the most important feature
in determining the probability of function. Regression allowed
us to quantify the contribution of residue type to predicted func-
tion, and this was consistent with earlier work: ADs are generally
depleted of positively charged residues and enriched for acidic,
hydrophobic and especially aromatic residues. Importantly, this
approach also allowed us to examine the contributions of simple
sequence motifs. Our analysis showed that functional ADs are
enriched for specific dipeptides and depleted of others. One of
these dipeptides, DW, had been identified earlier (Ravarani
et al., 2018). This is in agreement with a prior proposal that one
function of acidic residues in ADs is to promote solvent exposure
of hydrophobic residues that are involved in direct molecular in-
teractions (Staller et al., 2018).

To improve performance and to enable analysis on a prote-
ome-wide scale, we developed a deep neural network for AD
prediction. Deep learning allows predictions of function without
a priori knowledge about which patterns or properties might be
important for the prediction. For example, identification of ADs
with this approach is independent of the number, position, or
length of ADs contained within any of the 30-mers. This
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approach gave a striking improvement in the accuracy of AD pre-
diction compared to the logistic regression model (AUPRC 0.975
compared to 0.934). ADpred performs well, even with se-
quences that show extreme bias in amino acid composition
against AD function. Including features representing predicted
disorder did not increase performance. This is not surprising,
because it is unlikely that a sequence in our library of 30-mers
would by chance fold by itself.

Analysis of sequence features that contribute to ADpred
performance showed that ADs contain clusters of hydrophobic
residues in the background of an acidic polypeptide and that
the strongest ADs contain multiple examples of this feature.
This feature is found in both natural and synthetic ADs and
seems a key general feature corresponding to function. Earlier
it was noted that the Gcn4 N-terminal AD requires a combination
of four such clusters spread out over ~100 residues (Jackson
et al., 1996; Tuttle et al., 2018). However, until our new analysis,
it was unclear whether this feature generally contributed to the
function of shorter ADs (e.g., in the 15-20 residue range) or
whether AD function is primarily encoded by combinations of
more sequence-specific motifs (Piskacek et al., 2007; Warfield
et al., 2014).

We suggest that these hydrophobic clusters function to
increase the effective affinity of the AD peptides for their coacti-
vator targets using a mechanism similar to avidity or allova-
lency—whereby a receptor dynamically interacts with multiple
binding sites on a single ligand, effectively inhibiting the dissoci-
ation of the two molecules (Locasale, 2008; Olsen et al., 2017). In
other words, there are a minimum number of weak dynamic in-
teractions required between activator and target to generate bio-
logically relevant affinity and in vivo function. This mechanism fits
nicely with the dynamic and fuzzy binding of acidic activators to
Med15, and presumably other coactivator targets, as well as the
finding that AD-coactivator binding is driven in part by a favor-
able entropy change (Pacheco et al., 2018; Tuttle et al., 2018).
Importantly, our results explain the known length-dependence
of function for ADs and the relationship of amino acid composi-
tion to function—the probability of multiple acidic-hydrophobic
clusters is highest in peptides with appropriate amino acid
composition. Our results that functional ADs are >9 residues
in length are also in agreement with this mechanism.

These new results, combined with earlier work, show that
functional acidic ADs (1) consist of a disordered polypeptide
with biased amino acid composition, (2) typically contain multiple
clusters of hydrophobic residues in the background of an acidic
polypeptide, (3) are enriched for specific short dipeptide se-
quences and depleted of others, (4) have less disorder and
more helical propensity than surrounding sequences that facili-
tate the presentation of their hydrophobic residues to interacting
partners, and (5) are typically of length >9 residues. Taken
together, our characterization fits with a fuzzy-binding mecha-
nism where the interactions take place in a dynamic environment
resembling a hydrophobic cloud rather than combinations of
sequence-specific interactions.

Tests of our optimized model showed that it can accurately
identify acidic ADs and pinpoint functionally important residues
within transcription factors. For example, in silico mutagenesis
of the Gcn4 cAD to every possible residue and predicting the
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effect on AD probability gave results remarkably consistent with
extensive experimental analysis. ADpred also recognized well-
characterized ADs within other yeast, Drosophila and human
factors. However, several findings showed that sequences with
potential AD function are not exclusive to transcription activa-
tors. First, we found predicted ADs within regions not known to
function as ADs including some structured protein regions. Sec-
ond, while we found that these AD-like peptides are modestly
enriched in yeast transcription factors compared to the prote-
ome, they are not enriched in Drosophila or human transcription
factors. This may indicate that acidic ADs are not as common
among human transcription factors compared with yeast factors
and provides a path for characterization of these other AD types.
In combination, our results demonstrate that AD function re-
quires that the peptide be located in the proper protein context
and that not all proteins having an acidic AD-type sequence
will work as activators. Recognition of these “false-positives”
when screening the proteome will require additional information.
For example, ADpred was trained on short random sequences,
which are likely to be disordered. Identification of true ADs in
transcription factors will likely be more accurate if only disor-
dered regions are considered. It is important to note that our
screen used a TATA-containing inducible promoter. Earlier
studies showed that enhancers, the DNA targets of activators,
can have specificity for a certain promoter type and that coacti-
vator requirements can vary dependent on the gene regulatory
region (Butler and Kadonaga, 2001; Haberle et al., 2019).

Some yeast acidic activators, such as Gal4, work in all eukary-
otes, and the ADs we have isolated here have similar properties
and are likely of this class. In contrast, some higher eukaryotic
cell-type-specific activators bind particular coactivator targets
using a sequence-specific and conventional protein-protein
interface that likely have different sequence requirements (De
Guzman et al., 2006). It will be of great interest in future work
to repeat the screen using promoters with different coactivator
requirements and promoter sequence elements to determine
whether this setup changes the sequence features necessary
for transcription activation. It will also be of interest to test how
predictions of AD function correlate with the ability to form con-
densates—a property associated with at least some ADs
(Hahn, 2018).
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins

3-Amino 1,2,4-Triazole Sigma-Aldrich A-8056
Sulfomeutron methyl Sigma-Aldrich 34224
Deposited Data

Raw DNA sequencing data of AD-positive NCBI Sequence Read Archive (SRA) SAMN14330228

and negative datasets

Experimental Models: Organisms/Strains

Saccharomyces cerevisiae strain SHY1018

Steven Petesch (FredHutch)

mat alpha ade2::hisG leu2 delta 0 lys2 delta
0 met15 delta 0 trp1 delta 63 ura3 delta

0 gcn4 delta::KanMX, Ch | integrated
URAS3::ARG3-CYC1p-eGFP

Oligonucleotides

DNA oligonucleotides

nextera i7 barcodes

Integrated DNA technologies

lllumina

Sequences given in Table S2; STAR
Methods

UDP0001-UDP0096

Recombinant DNA

plasmid pLH365

Linda Warfield (FredHutch)

ARS CEN LEU2 + 1 Kb upstream DNA and
the coding sequence for S cerevisiae Gen4
residues 132-281. Relevant sequence in
STAR Methods.

Software and Algorithms

Custom code and algorithms

Logistic Regression algorithm

Ariel Erijman

https://scikit-learn.org/

https://github.com/aerijman/
ADpred_publication

LogisticRegressionCV function

Neural Network algorithm Chollet, 2015 Keras 2.1.6

Neural Network algorithm https://tensorflow.org Tensorflow

Neural Network algorithm Kingma and Ba, 2014 ADAM optimizer
Neural Network algorithm https://scikit-learn.org/ GridSearchCV method
Protein homology detection Zimmermann et al., 2018 HHpred

Disordered Protein Predictions Dosztanyi, 2018 IUPred 1.0

Statistical Analysis https://SciPy.org scipy.stats.hypergeom
Secondary Structure Prediction Cuff and Barton, 2000 PSIPRED 4.0.1

Other

AMPure XP beads Beckman Coulter A63881

KOD extreme Polymerase emdmillipore 71975

Phusion polymerase New England BioLabs MO0530S

RiboPure DNasel ThermoFisher AM1926

Transcriptor First Strand cDNA Roche 04897030001
Synthesis Kit

Power SYBR Green PCR Mater Mix ABI/ThermoFisher 4367659

Zirconia beads, 0.5 mm Research Products International 9834

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Steven

Hahn (shahn@fredhutch.org).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

S. cerevisiae reporter strain SHY1018 (From Steven Petesch, Fred Hutch) was derived from strain BY4705 (Brachmann et al., 1998)
and contained a deletion of the GCN4 gene, was reverted to HIS3+ (required for 3-AT selection) and contained a synthetic ARG3-
CYC1 promoter driving eGFP expression integrated into a gene desert region of Chromosome | with the following genotype: mata
ade24::hisG leu2.40 lys240 met1540 trp1463 ura340 gcn4 4::KanMX, Ch | integrated URA3::ARG3-CYC1p-eGFP. Strain SHY823
was used for gRT-PCR assays in tests of synthetic and natural AD-Gcn4 derivatives with genotype: mata ade2 4::hisG his34200
leu240 lys240 met1540 trp1463 ura340 gcn4 A::KanMx

METHOD DETAILS

Design of the randomized libraries

For the first library, we computed the ratio of A, C, G, and T needed at each codon position to obtain a roughly equal probability for
encoding each of the 20 amino acids and a minimal probability for stop codons within our random 90-mer nucleotide sequence. In a
custom python script, we minimized an objective function using the “basin hopping” algorithm (Wales and Doye, 1997) implemented
in the Python scientific library scipy (Oliphant, 2007). The objective function is the Euclidean distance from equal representation of all
20 amino acids (Pr(aa) = 0.05) and an absence of stop codons (Pr(stop) = 0). The goal for the second library was to obtain amino acid
target probabilities equal to the average observed in disordered regions. We used the same Python script to compute the optimal
ratios of A, C, G, and T to minimize the Euclidean distance with target and predicted probabilities.

Oligonucleotides containing 30 repeats of the randomized codons (see below) were ordered from Integrated DNA Technologies
(Coralville, IA). Each of the three codon positions contains a defined ratio of A/C/G/T to generate the desired bias. The oligonucle-
otides were extended in a PCR reaction to add 40 bp identity on each end to plasmid pLH365 (see below). This plasmid was derived
from the ARS CEN LEU2 vector pRS315 and contains 1 Kb upstream DNA and the coding sequence for Gen4 residues 132-281. This
upstream DNA contains all known Gcn4 promoter and translational regulatory elements. The plasmid was digested with Sbfl and Notl
and 4 ng of linearized vector, and 12 pg of the PCR products was transformed to electrocompetent yeast strain SHY1018 so that
in vivo homologous recombination inserted the randomized 30-mers into the N terminus of Gen4 (Benatuil et al., 2010). Ten trans-
formations were run in parallel to produce a library of ~2x107 clones.

FACS analysis, library DNA isolation and DNA sequencing

Cells containing the two libraries were separately screened by FACS. Prior to FACS analysis, 10 mL (~102 cells) of the glycerol stock
were diluted into 250 mL glucose complete media without leucine and grown to saturation, then diluted to ODggg = 0.3 in synthetic
complete media (Donczew et al., 2020) containing 3 mM 3-Amino Triazole but without leucine, uracil and histidine and. After 14-19
hours, cells were washed and diluted in double distilled water to ~107/ml and FACS sorted in a FacsAriall instrument. A threshold of
RU of fluorescence was set on the upper extreme of the negative sample. Cells with higher values of fluorescence than the threshold
were sorted into 4 different gates and ~0.5-1 x107 cells were collected. Sorted cells were collected by centrifugation for 1 min and
resuspended in 1-5ml of synthetic complete glucose media without leucine. Cells were grown overnight, then diluted to OD600 = 0.3
in 25 mL and grown overnight. 20 mL cells were harvested by centrifugation, washed with 10 mL H20 and resuspended in 4 mL TE
buffer. 2.5 mL Zr-SiO2 beads were added and the suspension shaken 7X in a mini Bead Beater (Biospec products) for 3 minutes at
maximum speed with 5 min rests on ice between shaking cycles. Once cell lysis reached 70%-90%, the supernatant was transferred
to a 15 mL falcon tube with 4 mL of Phenol/CHCI3 mixture, vortexed for 30 s and centrifuged at 4200 rpm for 15 minutes. The su-
pernatant was transferred into microcentrifuge tubes and centrifuged at maximum speed for 10 minutes. The aqueous phase was
transferred to new tubes and extracted with an equal volume of chloroform. The organic layer was extracted with an equal volume
of water and the two aqueous fractions were combined and ethanol precipitated and treated with RNaseA to generate the plasmid
DNA libraries. 2 pL of the DNA libraries (2-19 x 107 M plasmid DNA) was amplified for sequencing in a reaction with 20 nM forward
and reverse primers, 0.2 mM dNTPs and 0.04 U/ul of Phusion enzyme in a 50 pL reaction. DNA from FACS-sorted bins 1-4 were
barcoded using lllumina nextera i7 barcodes. The PCR product was purified with AMPure beads (1.8 uL beads/ul PCR product) ac-
cording to manufacturer instructions and eluted in 50 uL TE. The DNA concentration was measured with a picogreen assay and DNA
sequencing was performed on an lllumina HiSeq instrument. After FACS analysis and DNA sequencing, sequences from both li-
braries were combined into a single dataset to increase the number of samples.

Data processing for machine learning

All procedures are implemented in custom python and bash scripts. Reads 1 and 2 from paired-end sequencing were paired with
FLASH (Magoc and Salzberg, 2011). We filtered out sequences longer than 90 base pairs, with sequencing quality PHRED score
less than 30 for a given base, with frameshifts, or without start or stop codons. Paired nucleotide sequences were translated to amino
acids. Sequence clustering (Edgar, 2010) was applied to minimize redundancy in the libraries (with minimum sequence identity of
80% per cluster). Each cluster was represented by its most frequent member sequence. Each such sequence is included in the final
reduced dataset and the total number of reads in bins 1 to 4 and background correspond to the sum of reads of all members of the
cluster. For an initial experimental validation, an activator enrichment score was calculated for each sequence in the final dataset as
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the summation of the number of reads in each bin, multiplied by coefficients (coeffy,;,) that correspond to the mean value of fluores-
cence of each bin (see section below):

4
> bin 1readsyin X coeffyi,

Score =
readseg

Here, readsneg Stands for the number of reads in the AD-negative set, which comprises all reads from the unsorted background library
minus any AD sequences found in FACS bins 1 to 4.

Machine learning analysis

The redundancy-filtered set of sequences with read counts in bins 1 to 4 and background were split into positive (AD-positive) and
negative (AD-negative) sets. The AD-negative set contains all sequences in the background library except those found within FACS
bins 1 to 4. The positive set contains all sequences with at least one read in total in bins 2 to 4. Omitting sequences that were only
found in bin 1 improved model performance, presumably by eliminating false positives. Charges were computed for each sequence
as the summation of amino acid frequencies multiplied by a coefficient where (E,D = —1; KR =1 and H = 0.5).

For Figure 2A, we compared the sequence composition between the positive and negative sets by computing the log-odds score
for each sequence and plotting its distribution for the two libraries. The log odds score for each sequence was calculated as the sum
of the log enrichments of each of the 20 amino acids in the sequences, where enrichment is the ratio of amino acid frequencies in the
AD-positive versus the AD-negative sequence sets. Positive scores indicate an amino acid composition similar to the AD-positive set
while negative scores indicate a composition similar to the AD-negative set. Denoting with aa; the ’th amino acid in the sequence,
with ¢,, the averaged frequency of the amino acid aa, in the positive set and with ¢, the frequency in the negative set, the log odds
score of a polypeptide sequence is:

20
log — odds score= " log (qﬁ;a / ¢;a) Baa
aa=1

In Figure 2B, we trained a logistic regression model with L2 regularization (1 =3.9 10-2 was chosen from a grid of 40 default values
provided in LogisticRegressionCV function from scikit-learn package) to predict whether a sequence is AD-positive or AD-negative.
The model was evaluated using 5-fold cross-validation. This required optimizing 21 parameters, one for each amino acid frequency in
the sequence and one offset. For Figure 2C, we trained a logistic regression model to predict AD function using the 400-dimensional
dipeptides composition instead of the 20-dimensional single amino acid composition.

To assess the importance of specific dipeptides for AD function, we performed 400 likelihood ratio tests, each comparing the full
model with models lacking one dipeptide feature. Dipeptides with significance p-values below 0.001 are indicated in Figure 2C by
their base 10 logarithm. We also built alternative AD score distributions by flipping the coefficients of a dipeptide to every other dipep-
tide and measuring the performance of these models in the test and validation datasets (Figure S1B). We repeated this for all dipep-
tides, or the specific dipeptides shown, and compared the distribution visually with boxplots.

The deep neural network for ADpred (Figure 3) was implemented using Keras 2.1.6 (Chollet, 2015) with a TensorFlow (https://
tensorflow.org) backend. Briefly, the input was composed of sequence and secondary structure (H, E and —, for Helix, B sheet
and random coil from PSIPRED 4.0.1) in a one-hot encoded matrix of dimension 30 by 23. This input was fed into a model made
up of a convolutional layer, two dense layers and the output dense layer. The convolution layer had 29 filters with filter size 6x23,
the first hidden dense layer had 100 neurons and the second hidden layer had 30 neurons. Each layer had a softplus activity
(log(1 + €%)). The hidden layers were regularized with L2 regularization (A = 0.001) and dropout (p = 0.5) layers. The final output
layer had a single neuron with a sigmoid activation function and was used to compute the final probability for AD function
prediction.

Deep learning models were trained with the ADAM optimizer (Kingma and Ba, 2014) using the binary cross entropy loss function,
and the model’s performance was analyzed using AUPRC (area under a precision-recall curve), which corrects for skewed class
sizes and is a common metric used in classification tasks. Each epoch was split into 250 batches. At the beginning of each epoch,
we randomly drew an equal number of positive and negative samples from the original dataset. Hyperparameters (batch size, number
of epochs, optimization algorithm, learning rate and momentum, weight initialization, activation functions, drop out probabilities and
convolutional filter properties) were optimized with GridSearchCV method from scikit-learn. Briefly, for each combination of features
(amino acid sequence, secondary structure and disorder), the complete dataset was split into 10 parts. 8 were used to train the
models, 1 to optimize the hyperparameters and 1 to test the model. This was repeated 10 times for each hyperparameter setting,
randomly initializing the weights of the network. Each of the 10 parts was used for testing and each part for validation exactly one
time. At each of these 10 iterations, average precision and recall and standard deviation of the mean were measured on the test
set (for the 10 random initializations). Figure 3C shows the results of applying such procedure. To train ADpred, each hyperparameter
was fixed to the mean of the optimum over its 10 values (detailed in the previous paragraph). Then the complete set was split again
into 1 part as a test set and 9 parts for training. The best model over 100 random initialization of the weights was chosen based on its
AUPRC score on the test set.
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For Figure 4A, all residues of a cAD 30-mer were mutated to all other 19 amino acids and ADpred probability was computed. In
Figure 4B the same approach was applied to cAD derivatives, and ADpred results were compared to experimental results (Warfield
et al., 2014).

To search for AD-regions in full protein sequences, we rolled a 30-residue long window over the entire sequences and assigned the
score to the residue in the middle (the 16™ position in the 30-mer). Ordered domains were obtained from HHpred (Zimmermann et al.,
2018) and the d2p2.pro webserver (Oates et al., 2013).

Analysis of ADpred dependence on amino acid composition

To experimentally test ADpred and to demonstrate that the model captures more than the amino acid composition of input se-
quences, we designed 30-mers with the same amino acid composition (and hence log-odds scores, Figure 2A) but in the opposite
extremes of the scale of ADpred probabilities. We picked sequences from low to high log-odds scores (A to E in Figure 6C) and
permuted the order of amino acids in each of these sequences 10,000 times. We sorted each library of 10,000 sequences by their
ADpred probabilities. We then selected peptides with high and low prediction scores and tested them for in vivo function by fusion to
the Gcn4 DNA binding domain and analysis by RT gPCR.

Proteome analysis for ADs

To search for ADs in full length yeast protein sequences, a window of 30 residues was scanned along all annotated protein sequences in
yeast (data from Saccharomyces Genome Database). and the ADpred probability for the window was assigned to the central amino acid
in the window (the 16™). We calculated p-values for the enrichment of ADs in the set of transcription factors compared to the yeast pro-
teome with the hypergeometric test as follows. The summed lengths M of all proteins in the proteome corresponds to the population
size, and the summed length N of all transcription factor sequences corresponds to the “labeled” part of the population. Sites with five or
more contiguous residues with a score > 0.8 correspond to the samples drawn. Suppose there are m such sites, n of which lie within
transcription factors. The p-value for the hypergeometric test is the probability to obtain k or more sites within the transcription factors.

The enrichment is computed as
n/m

enrichment = W

TR

We used the implementation as survival function in scipy.stats.hypergeom. Disorder and secondary structure predictions were
calculated with PSIPRED 4.0.1 (Cuff and Barton, 2000) and IUPred 1.0 (Dosztanyi, 2018).

and the p-value corresponds to:

K-mer analysis of protein sequences

In our first approach to examine the length requirements of ADs (Figure S4), we searched for protein regions that have the highest
impact on the ADpred score. For each protein of interest, we extracted all overlapping k-mers of a fixed length k, for k = 1 to 30. These
k-mers were computationally inserted into neutral N-terminal C-terminal 30 residue flanking sequences that showed negligible
ADpred scores of around 0. For each length class k, the k-mer with the maximum ADpred score was identified and plotted
together with its ADpred score (Figure S4). The sequences used for the adapters are TNSANAANASASSQAGQQATQNQNTAQQNG
(N-terminal) and GNGNQNQTTSTSNASANANSGSQGTGSSSQ (C-terminal).

Analysis of AD length requirements

In our second approach to examine the length requirements of ADs (Figure 6B), sequences of varying lengths, from 1 to 40 residues
long, were simulated from a random uniform distribution with equal probability for all 20 amino acids (Pr(aa) = 0.05). For each length,
10,000 sequences were sampled and computationally inserted between the constant “C” and “N” terminal 30-mer flanking se-
quences, neutral to ADpred, used in the above k-mer analysis. The number of sequences with ADpred score > 0.8 from the
10,000 sampled sequences are reported and plotted as bar plot in Figure 6B.

Test of the 9aa TAD motif

Occurrences of the 9aa motif for both the higher and lower stringency versions of the motif (Piskacek et al., 2007) were searched
using the re python library for regular expressions (Prosite syntax): [MDENQSTYGJ{KRHCGP}ILVFWM]{KRHCGP}{CGP}
{KRHCGP}[ILVFWM] [ILVFWMAYJ{KRHC} and [MDENQSTYCPGAJX[ILVFWMAY]{KRHCGP}{CGP}{CGP}[ILVFWMAY]XX)

Molecular Cell 78, 1-13.e1-€6, June 4, 2020 e4




Please cite this article in press as: Erijman et al., A High-Throughput Screen for Transcription Activation Domains Reveals Their Sequence Features and
Permits Prediction by Deep Learning, Molecular Cell (2020), https://doi.org/10.1016/j.molcel.2020.04.020

¢ CellPress Molecular Cell

ADpred web server
Protein sequences can be analyzed using ADpred at the website: https://adpred.fredhutch.org.

Randomized oligonucleotide sequences
Shown below are the two oligonucleotides used for generation of randomized 30-mers fused to the N terminus of the Gcn4 linker and
DNA binding region.
Oligo 1: optimized for equal ratios
5" - CAATTTGTCTGCGGCCGCAAATAAATTAAATACAAATAAAATGTCTGCA [(ratio 1)(ratio 2)(ratio 3)]sp GGCGACAATGACATT
CCTGCAGGCACTGACGATG- 3
A,C,G,T ratios at the three codon positions were: ratio 1 (0.295, 0.230, 0.248, 0.227), ratio 2 (0.323, 0.258, 0.245, 0.174), ratio 3
(0.000, 0.286, 0.424, 0.289)

Oligo 2: optimized for disordered enriched regions
5 - CAATTTGTCTGCGGCCGCAAATAAATTAAATACAAATAAAATGTCTGCA [(ratio 1)(ratio 2)(ratio 3)]s0 GGCGACAATGACATTC
CTGCAGGCACTGACGATG- 3
A,C,G,T ratios at the three codon positions were: ratio 1 (0.312, 0.084, 0.406, 0.198), ratio 2 (0.372, 0.158, 0.177, 0.293), ratio 3
(0.254, 0.241, 0.265, 0.241)

These oligos were PCR amplified with the following primers to insert 40 bp identity on each end with pLH365:
HomoRec_pLH365_AD-Gcn4_LongF:

ccctatactatcattaattaaatcattattattactaaagttttgtttaccaatttgtct GCGGCCGCaaataaattaaatacaaataaaatgtctgc
HomoRec_pLH365_AD-Gcn4_LongR:

ggtaccagagaaacttcttcagtggattcaattgccttatcagccaatgaaacatcgtcagtgcctgcaggaatgtcattgtcgec

Randomized oligos were amplified using 20 ng PAGE-purified DNA, 400 nM HomoRec amplification oligos, 0.2 mM dNTPs, 1X
Phusion buffer, and 1.3 U Phusion polymerase (NE Biolabs) and the cycling program: 95 deg 60 s, (95 deg 30 s, 60 deg 60 s, 75
deg 90 s) X35, 72 deg 4 min. PCR products were purified on AMPure XP beads (Beckman Coulter). The vector plasmid, pLH365,
was prepared by digestion with Sbfl and Notl, and purified on AMPure XP beads. The concentration of pLH365 with the randomized
oligo insert in the DNA preparation was calculated by gPCR using primers: fwd (cctttctgtcaaattatccagg) and rev (ccgcagacaaattgg-
taaac). 4 pg linearized pLH365 (6.1 nM final) and 12 ng PCR product (56 nM final) were co-transformed by electroporation (Benatuil
et al., 2010) to yeast strain SHY1018 (see below). For each randomized oligo construct, ten transformations were performed in par-
allel to create a library of ~2x107 clones. Transformed cells were grown to saturation in glucose complete media without leucine (1-
3 days), re-diluted to ODggg = 0.3 and grown to ODggg ~1-1.5. Glycerol was added to 20% final and cells frozen in liquid nitrogen and
stored at —80C in 10 mL aliquots.

PLH365 vector sequence

Shown is the relevant promoter and coding sequence of pLH365 into which the randomized 30-mers and the 30 residue test se-
quences were cloned. (nnn)sg indicates the site of oligo insertions. The Gcn4 coding sequence is capitalized and encodes:
MSA-(nnn)so — Gen4 (125-281)-3xFlag. Not1 and Sbf1 restriction sites are shown in italics. The coding sequence for 3xFlag is in
bold type.

ttatccaggtttactcgccaataaaaatttccctatactatcattaattaaatcattattattactaaagttttgtttaccaatttgtctgcggccgcaaataaattaaatacaaataaa
ATGTCTGCA(NNN)30GGCGACAATGACATTCCTGCAGGCACTGACGATGTTTCATTGGCTGATAAGGCAATTGAATCCACTGAA
GAAGTTTCTCTGGTACCATCCAATCTGGAAGTCTCGACAACTTCATTCTTACCCACTCCTGTTCTAGAAGATGCTAAACTGACT
CAAACAAGAAAGGTTAAGAAACCAAATTCAGTCGTTAAGAAGTCACATCATGTTGGAAAGGATGACGAATCGAGACTGGATCA
TCTAGGTGTTGTTGCTTACAACCGCAAACAGCGTTCGATTCCACTTTCTCCAATTGTGCCCGAATCCAGTGATCCTGCTGCTC
TAAAACGTGCTAGAAACACTGAAGCCGCCAGGCGTTCTCGTGCGAGAAAGTTGCAAAGAATGAAACAACTTGAAGACAAGGT
TGAAGAATTGCTTTCGAAAAATTATCACTTGGAAAATGAGGTTGCCAGATTAAAGAAATTAGTTGGCGAACGCATGGACTACAA
AGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGACAAAtga

RNA isolation

Cell cultures were grown in duplicate at 30°C to ODggp 0.5 — 0.8 in 2% dextrose synthetic medium lacking leucine, isoleucine, and
valine. Cells were treated with 0.5 pg/ml SM for 90 minutes to induce amino acid starvation. Following induction, cells from a
10 mL culture were collected by centrifugation and washed with 5 mL sterile water. The pellets were resuspended in 0.4 mL TES
(10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS) then mixed thoroughly with 0.4 mL acid phenol (Ambion, AM9722), and incubated
for 1 hour at 65°, 1200 rpm in a Thermomixer R (Eppendorf). Phases were separated by centrifugation for 15 minutes at 4°, and
the aqueous phase was transferred to fresh tubes and extracted again with 0.4 mL acid phenol followed by 0.3 mL chloroform.
RNA was precipitated from a volume of 100 - 200 puL aqueous solution using 1/10 volume 3 M sodium acetate and 3 volumes ethanol
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and collected by centrifugation for 15 minutes at 4°. The RNA pellets were washed with 1 mL 80% ethanol, dried in a SpeedVac
concentrator, and solubilized in 50 — 100 pL nuclease-free water (Ambion, AM9937). RNAs were stored at —80°.

QUANTIFICATION AND STATISTICAL ANALYSIS

qRT-PCR and quantification

RNA concentrations were determined using a NanoDrop spectrophotometer (ThermoFisher), and 15 ng RNA from each sample was
treated with RiboPure DNasel (ThermoFisher, AM1926). The Transcriptor First Strand cDNA Synthesis Kit (Roche, 04897030001) was
used to generate cDNA from 1.1 ng DNA-free RNA. Anchored oligo(dT) g was annealed to mRNA for 10 minutes at 65°, then extended
by Transcriptor RT for 1 hour at 50° before inactivation at 85° for 5 minutes. cDNAs were stored at —20°.

Gene-specific gPCR was performed in triplicate using primers near the 3’ end of the genes. Five microliter reactions containing
Power SYBR Green PCR Mater Mix (ABI, 4367659) were assembled in 384-well plates (ABI, 4309849), and run on a QuantStudio
5 Real-Time PCR System (ABI). Relative amounts of DNA were calculated using a standard curve generated from serial dilutions
of purified yeast genomic DNA from 10 — 0.001 ng. The detected quantities of ARG3 and HIS4 mRNAs were normalized to ACT1
mRNA to determine RNA expression levels.

Primer Sequence

ACT1-FP1 TGGATTCCGGTGATGGTGTT
ACT1-RP1 TCAAAATGGCGTGAGGTAGAGA
F-RT-ARG3 TCGCATGTCTGAAATTCGGTAT
R-RT-ARG3 CATCGACAATATCGGAATCCATT
HIS4-FP1 GCACTGCCATTTTACCAAGTACTG
HIS4-RP1 CTTGGTGGAGATGCAAACACA

Enrichment score analysis

Values of fluorescence used to delimit the gates for sorting cells during selection with FACS were used to compute the activator
enrichment score. The relative fluorescence units (RFU) correspond to the ratio of the mean fluorescence unit (FU) of bin X over
bin1 (e.g., av.bin1 = (120+400) /2 = 260; av. bin2: (640+400)/2 = 520. Then 520/260 = 2).

bins lower upper RFU

1 120 400 1.000
2 400 640 2.000
3 640 1000 3.154
4 1010 7500 4.577

DATA AND CODE AVAILABILITY

Raw DNA sequence data generated during this study has been deposited at NCBI Sequence Read Archive (SRA) Database:
SAMN14330228. Custom code and algorithms can be found at: https://github.com/aerijman/ADpred_publication.
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Figure S2. Prediction of important residues within yeast ADs and comparison with in vivo
analysis. ADpred scores predicting the probability of AD function for all possible single amino
acid mutations for (A) activation domain 1 (AD1) of Ino2, (B) AD2 of Ino2, and (C) the AD of
Gal4. Red indicates a high and blue a low ADpred probability for the in-silico mutation. Wild
type ADpred scores are indicated in the colorbar. For comparison, results from an in vivo
analysis where double or triple alanine substitutions were assayed for AD function (Pacheco et
al., 2018; Tuttle et al., 2019). Conserved hydrophobic and acidic residues that were mutated are
shown in blue and green, respectively. Double or triple alanine mutations resulting in less than
~50% AD function are marked with brackets below the x-label. For Ino2 AD1, conserved
residues that ADpred predicts to be important but not tested experimentally are indicated by:
*. For Gal4 mutations, residue F849 (marked with **) was mutated in conjunction with Y846
and this derivative has 47% WT activity. Red asterisk marks Gal4 residues Y865 and Y867, which
have >75% WT function when individually mutated to Ala. Related to Fig 4.
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Figure S4. AD length determined by k-mer analysis of two yeast transcription factors. For each
k-mer length between 1 and 29, we extracted each k-mer contained in the sequence of yeast
transcription factors Gen4 (left) and Togl (right) and computationally inserted them between
30 residue-long randomly generated flanking sequences that showed negligible ADpred scores:
TNSANAANASASSQAGQQATQNQNTAQQNG (N-terminal) and
GNGNQNQTTSTSNASANANSGSQGTGSSSQ (C-terminal). Top: For each length k, the k-mer with
the maximum ADpred score is plotted. Bottom: sequences are aligned relative to the WT
sequence with blue bars indicating the ADpred score for each individual peptide when inserted
in the neutral flanking sequence. Related to Fig 6.
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and 6C but with quantitation of mRNA at the Gen4-dependent ARG3 gene. Dotted line indicates
2-fold activation above cells lacking Gen4 (vector). Red bars = sequences with high ADpred

probability; blue bars = low ADpred probability. All samples were treated with SM unless

otherwise indicated. Dotted horizontal line: level of SM-induced transcription in cells lacking
Gcn4. (B) Scatter plot of the logarithm of ADpred probabilities versus log-experimental RT gPCR
results obtained on HIS4 and ARG3 mRNAs. Pearson correlation and p-value for a two-sided

hypothesis test (where the null hypothesis corresponds to slope=0) are indicated. Related to Fig

6.
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Figure S7. Structural properties of regions surrounding predicted ADs in yeast transcription
factors. Analysis was carried out as described for Fig 7. The upper plot represents analysis of
the yeast proteome, the middle plot represents analysis of all yeast proteins classified as
nuclear and the lower plot (reproduced from Fig 7B) is an analysis of 132 curated yeast
transcription factors. Related to Fig 7.
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Supplementary Tables

Table S1 (recommend opening with text editor). See Fig 1.
Unsorted list of AD-positive and AD-negative sequences with:
e List of AD-positive and negative sequences
e Distribution of sequences in the background and the four FACS bins
e C(Calculated AD-enrichment score

Table S2
e RT qPCR data and results. See Fig 6 and Fig S6.
e Sequences of the natural and synthetic ADs tested in Fig 6.

Table S3
The sets of yeast, Drosophila and human transcription factors (TFs) used in the AD
enrichment analysis of Fig 7A and Fig S7. TFs are listed as UniProt IDs (Bateman et al.,
2018). Yeast factors are a curated list combining data from mining the Saccharomyces
Genome Database (Cherry et al., 2012), the set of TFs from Harbison (Harbison et al.,
2004) and from manual inspection of known functional properties of each factor.
Human and drosophila TF lists were obtained from factors (Stampfel et al., 2015;
Vaquerizas et al., 2009). See Fig 7.

Table S4.

Performance metrics of the regression and deep learning models.

Method Feature AUPRC AUROC Accuracy

Regression | Single aa frequency 0.9337 £ 0.0024 0.9452 +0.0020 0.8830 +0.0032
Regression Dipeptide frequency | 0.9418 +0.0018 0.9508 +0.0017 0.8915 £ 0.0039
Deep NN Seq. 0.9741 +0.0007 0.9762 + 0.0004 0.9303 + 0.0008
Deep NN Seq._Dis. 0.9726 + 0.0008 0.9747 + 0.0005 0.9268 + 0.0010
Deep NN Seq._SS. (ADpred) 0.9750 = 0.0007 0.9768 + 0.0005 0.9324 +£0.0013
Deep NN Seq._SS._Dis. 0.9729 + 0.0006 0.9750 + 0.0005 0.9285 +0.0011
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